Tran\$ystems

1100 Slperio duenue. Suite 1000
Cleveland, OH 44114-1906
Tel 216-861-1780
Fax 216.274-4595
August 6, 2018

Colleen K. Reilly, FMP
President, Lake Park Friends
P.O. Box 71197

Milwaukee, WI 53211

Re: Lake Park Arch Bridge over Ravine Road - Phase 3: Structural Analysis Results

TranSystems was contracted by Lake Park Friends to conduct struclural engineering services for the Lake Park Concrete Arch Bridge, including a structural analysis of the bridge in order to determine its load carying capacity. All members were analyzed in accordance with Allowable Stress Design (ASD) with the AASHTO Standard Specifications for Highway Bridges, $17^{\text {th }}$ Edition. The results of the structural analysis are presented as capacity to demand ratios based on service loads and allowable stresses. All information used in the analysis is based on existing plans, field measurements, malerial testing, and pertinent historic documentation.

The stuctural analysis was performed in two (2) stages with different live loads considered:

1) Original Design Loads - This analysis serves as a proof of concept for the bridge's original design intent. The analysis was perfomed based on the onginal 80 psf design live loading shown in the plans, and capacities were calculated based on design-level allowable stresses (ASD methodology) as shown in AASHTO Aticles 8.15.2.1 and 8.15.2.2.
2) Modern Design Loads - This analysis determines the abjiliy of the bridge to resist modem code-prescribed design loadings. The analysis is based on a 90 psf pedestrian loading at the Inventory level, and a 90 psi pedestrian loading in conjunction with an H5 Truck (5-ton maintenance vehicle) at the Operating level. For this analysis, allowable stresses utilized for reinforcing steel and concrete are based on AASHTO MBE Tables 6B.5.2.3-1 and 6B.5.24.7-1.

The structural analysis for both stages considered the following three (3) alternatives:

1) As-Bullt - The analysis consists of the original structure in its as-constructed condition, utilizing original section properies, geometry, and material specifications. This alternative represents the original design criteria for the structure as shown on the original plan set with verification from field obsevation.
2) As-Configured - The analysis consists of the structure in its existing configuration, accounting for modifications to the structure such as new railings or wearing surfaces, with original as-buill section properties and material specifications. This altemative demonstrates the impact of structural modifications to the bridge from its original design intent.
3) As-Inspected - The analysis consists of the as-configured bridge as it stands today, any observed section loss and deterioration, and any revisions to the material specifications based on testing. This altemative represents the ability of the structure to carry the original design loading in its current configuration and condition and provides a baseline for any future loading considerations.

ANALYSIS METHODOLOGY

Structural analysis calculations provide a basis for determining the safe load capacity of a bridge. These analyses require engineering evaluation in determining a capacity to demand ratio that is applicable to maintaining the safe use of the bridge and arriving at posting and permit decisions. A capacity to demand ratio of less than 1.0 indicates that the structure does not have sufficient capacity to carry the specified loading. As part of every inspection cycle, bridge analyses (or load ratings) should be reviewed and updated to reflect any relevant changes in condition or dead load noted during the inspection.

The Allowable Stress Design (ASD) method was used to rate all primary members of the bridge. The ASD method is based on analyzing the structure at service load levels (actual loads) and comparing those load effects to allowable stresses. Allowable stresses are used to calculate capacities that are lowering than the ultimate capacities of members, introducing a factor of safety into structural analysis calculations. The capacity to demand ratios for each bridge element are determined by dividing the allowable stress capacity of the member by the sum of the applied services loads.

- Inventory Level (INV) - Generally corresponds to the customary design level of stresses, but reflects the existing bridge and material conditions with regard to deterioration and loss of section. Structural analyses based on the Inventory level allow comparisons with the capacity for new structures and, therefore, result in a live load which can safely utilize an existing structure for an indefinite period of time.
- Operating Level (OPR) - Structural analyses based on this level generally describe the maximum permissible live load to which the structure may be subjected. While permitting live loads on the structure at this level of stress is acceptable, allowing unlimited numbers of loading conditions/vehicles to use the bridge at the Operating level may shorten the life of the bridge.

CAPACITY TO DEMAND RATIOS

Original Design Loading

The capacity to demand ratios from the structural analysis based on original design loading are shown in Table 1.

Bridge Element	Capacity to Demand Ratio (80 psf Original Design Load)			
	As-Built	As-Configured	As-Inspected	
Deck	1.10	1.02	1.06	
Longitudinal Spandrel Beam	1.25	1.16	1.04	
Arch Rib	1.11	1.07	1.22	

Table 1 - Summary of structural analysis results (presented as capacity to demand ratios) for each bridge element based on the original design loading of 80 psf .

The results of the As-Built analysis demonstrate capacity to demand ratios above 1.0 for all bridge elements. The results of the As-Configured analysis are slightly lower due to the added weight of the new railing and wearing surface since original construction, although the capacity to demand ratios are still above 1.0. The capacity to demand ratios are higher in the As-Inspected analysis than the As-Configured analysis due to the increased concrete strength from recent material testing despite minor section loss noted in the arch rib reinforcement.

Modern Design Loading

The capacity to demand ratios from the structural analysis based on modern design loads are shown in Table 2.

Bridge Element	Capacity-to-Demand Ratios (ASD)					
	As-Built		As-Configured		As-Inspected	
	Inventory (90 psf)	Operating (90 psf + H5)	Inventory $\text { (} 90 \text { psfi) }$	Operating (90 psf + H5)	Inventory (90 psf)	Operating (90 psf + H5)
Deck	1.13	1.02	1.05	0.98	1.10	1.02
Longitudinal Spandrel Beam	1.35	1.52	1.25	1.43	1.11	1.29
Arch Rib	1.14	1.55	1.07	1.50	1.23	1.69

Table 2 - Summary of structural analysis results (presented as capacity to demand ratios at both Inventory and Operating levels) for each bridge element based on modern pedestrian bridge loads.

The results of the structural analysis for modern design loadings demonstrate that the bridge has sufficient capacity to carry a 90 psf pedestrian loading at an Inventory level, as well as the same pedestrian loading with an additional H 5 truck at the Operating level. The only capacity to demand ratio below 1.0 is the deck for the As-Configured analysis alternative at the Operating level, which represents the structure with existing modifications and original allowable stresses considered. Note that this capacity to demand ratio is 1.02 in the As-Inspected alternative due to the increased concrete strength utilized for analysis based on material testing.

ANALYSIS ASSUMPTIONS AND RESULTS

Deck

The deck slab on the structure consists of a 6 " thick reinforced concrete deck with a 12'-0" width between bridge railings (see Figure 1). Based on an allowable compressive stress of 400 psi shown in the original design plans and a factor of safety of 4 which is typical of the time period, an ultimate compressive strength $\left(f_{c}\right)$ of 1600 psi was assumed for the As-Built and AsConfigured analysis. Based on the original design plans, transverse reinforcing steel consists of $1 / 2^{\prime \prime}$ by $11 / 2^{\prime \prime}$ historic Khan bars. A yield strength $\left(f_{y}\right)$ of 33 ksi was assumed for the reinforcing steel based on an allowable stress of 16 ksi shown in the plans. A 1" thick concrete wearing surface has been added to the structure since its original construction.

Figure 1 - Typical cross section of the bridge near the center of the arch span (from the original design plans).

Note that the original design plans indicate a transverse spacing of 18" on center; however, photographs from a field investigation show a spacing much closer than this (see Figure 1 and Photo 2). Based on these photographs, a transverse spacing of 7 " on center was conservatively assumed. It was assumed that the Khan reinforcing system was placed in such a way that the entire bar is effective in the primary moment region, while shear bars were bent at 45 degrees in the shear regions near the edge of the slab.

Figure 2 - Floor plan with deck slab reinforcement as shown in the original design plans. Note that the transverse and longitudinal rebar spacing is shown at 18 ".

Photo 1 - Underside of deck spall from field investigation. Note that scaled dimensions from this photograph indicate a transverse rebar spacing much closer than 18".

Below is a list of assumptions made for the analysis of the deck:

1. Based on the original plans, the reinforced concrete deck is $6^{\prime \prime}$ thick and spans $12^{\prime}-0^{\prime \prime}$ between the arch lines.
2. The original live load utilized for the analysis consists of a uniform distributed load of 80 psf from the original design plans. A 90 psf pedestrian load was utilized for the Inventory level analysis, while a 90 psf pedestrian load and H 5 truck were utilized concurrently for the Operating level analysis.
3. For the As-Built and As-Configured analyses, an ultimate compressive strength (f^{\prime}) of 1600 psi was utilized for the concrete. For the As-Inspected analysis, the ultimate compressive strength was increased to 2000 psi based on concrete testing that has been performed on the structure.
4. A yield strength $\left(f_{y}\right)$ of 33 ksi was assumed for the reinforcing steel based on an allowable stress of 16 ksi shown in the plans. For the analysis of the bridge under original design loads, this 16 ksi allowable stress was used for reinforcing steel in accordance with the original plans and AASHTO Article 8.15.2.2. For the analysis of the bridge under modern design loads, allowable stresses were based on AASHTO MBE Table 6B.5.2.3-1 with an allowable stress of 18 ksi for Inventory level and 25 ksi for Operating level.
5. Transverse reinforcing steel consists of $1 / 2^{\prime \prime}$ by $11 / 2^{\prime \prime}$ Khan bars with an allowable tensile stress of 16 ksi . The original design plans indicate a transverse spacing of 18 " on center; however, photographs from a field investigation show a spacing much closer than this. Based on these photographs, a transverse spacing of $7 "$ on center was conservatively assumed. It was assumed that the Khan reinforcing system was placed in such a way that the entire bar is effective in the primary moment region, while shear bars were bent at 45 degrees in the shear regions near the edge of the slab.
6. A 1 " thick concrete wearing surface was considered for the As-Configured and As-Inspected analyses, as shown in the deck core taken for petrographic analysis during the concrete testing (see Figure 3). No concrete wearing surface is included in the AsBuilt analysis because it was not present following the original construction.
7. Longitudinal reinforcing steel consists of $1 / 4^{\prime \prime}$ diameter rods spaced at 18 " on center.
8. Concrete clear cover was assumed to be 1 ".
9. No significant section loss has been documented on

Figure 3 - Overall profile of Core 3 (north end of deck) from the petrographic analysis for concrete testing. the reinforcing steel; therefore, the full reinforcing steel was considered in all analyses.
10. The deck was analyzed was a simply supported one-way slab spanning transversely. While potential twoway bending was investigated, the deck was determined to span transversely due to the much higher flexural capacity in the transverse direction than in the longitudinal direction based on reinforcing steel provided, which appears to match the design intent.

Based on the results of the structural analysis for the original design loading, the capacity to demand ratios for the deck are above 1.0 for all analysis alternatives. The As-Built capacity to demand ratio was calculated to be 1.10, indicating that the deck satisfies the original design criteria for the structure. The As-Configured capacity to demand ratio is 1.02 due to the added dead load from the concrete wearing surface. The As-Inspected capacity to demand ratio is 1.06 based on the increased concrete strength due to material testing.

The capacity to demand ratios for the deck for modern pedestrian bridges loadings are shown in Table 3.

Bridge Element	Capacity-to-Demand Ratios (ASD)					
	As-Built		As-Configured		As-Inspected	
	Inventory $(90 \mathrm{psf})$	Operating $(90 \mathrm{psf}+\mathrm{H} 5)$	Inventory $(90 \mathrm{psf})$	Operating $(90 \mathrm{psf}+\mathrm{H} 5)$	Inventory $(90 \mathrm{psf})$	Operating $(90 \mathrm{psf}+\mathrm{H} 5)$
	1.13	1.02	1.05	0.98	1.10	1.02

Table 3 - Summary of structural analysis results (presented as capacity to demand ratios at both Inventory and Operating levels) for the deck based on modern pedestrian bridge loads.

All capacity to demand ratios for the deck are above 1.0 under current pedestrian bridge design loads, except for the As-Configured analysis alternative at the Operating level (0.98), which represents the structure with existing modifications and original allowable stresses considered. Note that this capacity to demand ratio is increased to 1.02 in the As-Inspected alternative due to the increased concrete strength utilized for analysis based on material testing.

Longitudinal Spandrel Member

The longitudinal spandrel beam consists of the rectangular reinforced concrete beam section over the teardrop openings on each side of the structure (see Figure 4). These members were analyzed as flexural members with a simply supported 20^{\prime} clear span length. Based on the original design plans and field measurements, the beams are $12^{\prime \prime}$ wide by $3^{\prime}-2$ " tall from the bottom face to the top of deck, with the entire height included because the deck was poured monolithic with the beams. According to the original design plans, the beam reinforcing steel consists of two (2) 1 " by 3 " Kahn bars in the bottom face.

Figure 4 - Typical arch elevation showing the longitudinal spandrel members over the teardrop openings from the original design plans (highlighted red).

Flexural reinforcing steel consists of two (2) $1^{\prime \prime}$ by $3^{\prime \prime}$ Kahn bars in the bottom face of the beam. Based on the guidelines in the 1904 Khan Bar manual for reinforced concrete beams, the full cross-sectional area of the reinforcing bars as given in the manual should be assumed for strength calculations in flexural members (see Figure 5). As such, this analysis assumes that the Khan reinforcing system is placed in such a way that the entire bar is effective in the primary moment region while shear bars were bent at 45 degrees in the shear regions beginning 5 ' from each end of the beam (assumed one-quarter points).

Figure 5 - Excerpt from "Kahn System of Reinforced Concrete" manual dated 1904 providing which provides guidance on the calculation of effective reinforcing steel in reinforced concrete flexural members.

Below is a list of assumptions made for the analysis of the longitudinal spandrel beams:

1. Based on the original plans and field measurements, beam dimensions of $12^{\prime \prime}$ wide by $3^{\prime}-2^{\prime \prime}$ tall (measured from bottom of beam to top of deck) were utilized in the analysis.
2. The beam was analyzed as a simply supported flexural member with a clear span length of $20^{\prime}-0^{\prime \prime}$, spanning the horizontal top face of the teardrop opening based on the original design plans.
3. The original live load utilized for the analysis consists of a uniform distributed load of 80 psf from the original design plans with a tributary area of half of the deck. A 90 psf pedestrian load was utilized for the Inventory level analysis, while a 90 psf pedestrian load and H5 truck were utilized concurrently for the Operating level analysis.
4. Transverse live load distribution factors for the H 5 truck in the Operating level analysis were calculated by the lever rule.
5. For the As-Built and As-Configured analyses, an ultimate compressive strength (f_{c}) of 1600 psi was utilized for the concrete. For the As-Inspected analysis, the ultimate compressive strength was increased to 2000 psi based on concrete testing that has been performed on the structure.
6. A yield strength $\left(f_{y}\right)$ of 33 ksi was assumed for the reinforcing steel based on an allowable stress of 16 ksi shown in the plans. For the analysis of the bridge under original design loads, this 16 ksi allowable stress was used for reinforcing steel in accordance with the original plans and AASHTO Article 8.15.2.2. For the analysis of the bridge under modern design loads, allowable stresses were based on AASHTO MBE Table 6B.5.2.3-1 with an allowable stress of 18 ksi for Inventory level and 25 ksi for Operating level.
7. Flexural reinforcing steel consists of two (2) 1 " by $3^{\prime \prime}$ Kahn bars in the bottom face with an allowable tensile stress of 16 ksi . Based on the guidelines in the 1904 Khan Bar manual, the Khan reinforcing system was placed in such a way that the entire bar is effective in the primary moment region, while shear bars were bent at 45 degrees in the shear regions beginning 5^{\prime} from each end of the beam (assumed one-quarter points).
8. The dead load utilized for the analysis of each beam includes half of the deck, the weight of the railing, the self-weight of the beam, and the wearing surface (if applicable).
9. The original decorative concrete railing was considered for dead load in the As-Built analysis, while the heavier railing currently installed was considered in the As-Configured and As-Inspected analyses.
10. The 1 " thick concrete wearing surface was considered for the As-Configured and As-Inspected analyses only.
11. Concrete clear cover was assumed to be 2".
12. Based on photographs from the field investigation, $1 / 16$ " deep section loss was assumed for the reinforcing steel in the spandrel beams in the As-Inspected analysis.

Based on the results of the structural analysis for the original design loading, the capacity to demand ratios for the longitudinal spandrel beams are above 1.0 for all analysis alternatives. The As-Built capacity to demand ratio was calculated to be 1.25 , indicating that the spandrel beam satisfies the original design criteria for the structure. The AsConfigured capacity to demand ratio is 1.16 due to the added dead load from the concrete wearing surface and newer bridge railing. The As-Inspected capacity to demand ratio is 1.04 based on the increased concrete strength due to material testing and section loss noted to the reinforcement.

The capacity to demand ratios for the longitudinal spandrel beams for modern pedestrian bridges loadings are shown in Table 4.

Bridge Element	Capacity-to-Demand Ratios (ASD)					
	As-Built		As-Configured		As-Inspected	
	Inventory (90 psf)	Operating (90 psf + H5)	Inventory (90 psf)	Operating (90 psf + H5)	Inventory (90 psi)	Operating (90 psf + H5)
Longitudinal Spandrel Beam	1.35	1.52	1.25	1.43	1.11	1.29

Table 4 - Summary of structural analysis results (presented as capacity to demand ratios at both Inventory and Operating levels) for the longitudinal spandrel beam based on modern pedestrian bridge loads.

All capacity to demand ratios for the longitudinal spandrel members are above 1.0 under current pedestrian bridge design loads. The As-Built capacity to demand ratio is 1.35 for Inventory level and 1.52 for Operating level, indicating that this member in the original structure was designed with sufficient strength to carry these modern loads. The AsInspected capacity to demand ratio is 1.11 for Inventory level and 1.29 for Operating level. These values differ from the As-Built capacity to demand ratios due to increased load from additional wearing surface and railing loads, section loss noted to reinforcement, and added concrete compressive strength due to material testing. This indicates that the bridge is capable of carrying modern pedestrian design loads in its current configuration with all existing factors included.

Arch Ribs

The reinforced concrete arch ribs have a span length of 118 " -0 " from spring line to spring line with a rise of $18^{\prime}-0^{\prime \prime}$ at the arch center. The arch ribs were analyzed with a combination of hand calculations, STAAD models, and Excel workbooks. The arch ribs were modeled as a two-dimensional frame model created in STAAD. Pro v8i with fixed supports at the ends (see Figure 6). Dead loads were calculated by hand and applied using distributed or concentrated loads within the model. The position of live loads utilized for the analysis were varied to maximize load effects. These load effects were then exported from the STAAD output and charted on axial-moment interaction diagrams that were created based on allowable stress

Figure 6 - Two-dimensional arch rib model in STAAD.Pro (dead load case shown).

Below is a list of assumptions made for the analysis of the arch ribs:

1. Based on the original plans and field measurements, arch dimensions of $4^{\prime}-66^{\prime \prime}$ high by 12 " wide were used in the analysis. The additional 9 " wide by 11 " high portions of concrete on the interior faces at the bottom of the arch ribs were not included in the calculation of arch rib capacity to account for spalls and to be conservative, although this concrete weight was included for dead load purposes.
2. The arch ribs were analyzed using a two-dimensional frame model created in STAAD.Pro v8i with fixed supports at the bases.
3. The reinforced concrete arch ribs have a span length of $118 "-0 "$ from springing line to springing line with a rise of $18^{\prime}-0$ " at the arch center.
4. For the As-Built and As-Configured analyses, an ultimate compressive strength ($f_{c}{ }_{c}$) of 1600 psi was utilized for the concrete. For the As-Inspected analysis, the ultimate compressive strength was increased to 2000 psi based on concrete testing that has been performed on the structure.
5. Flexural reinforcing steel consists of both historic Khan and Truscon reinforcing systems. There are three unique reinforcing patterns across the length of the arch ribs, as follows:
a. Top Arch Segments - Two (2) 1" by 3" Kahn bars (top and bottom)
b. Middle Arch Segments - Two (2) 1" by 3" Kahn bars and one 3/4" diameter Truscon bar (top and bottom)
c. Lower Arch Segments - Two (2) 1" by 3" Kahn bars and one 1" diameter Truscon bar (top and bottom)
6. A yield strength $\left(f_{y}\right)$ of 33 ksi was assumed for the reinforcing steel based on an allowable stress of 16 ksi shown in the plans. For the analysis of the bridge under original design loads, this 16 ksi allowable stress was used for reinforcing steel in accordance with the original plans and AASHTO Article 8.15.2.2. For the analysis of the bridge under modern design loads, allowable stresses were based on AASHTO MBE Table 6B.5.2.3-1 with an allowable stress of 18 ksi for Inventory level and 25 ksi for Operating level.
7. The dead loads were calculated by hand and applied using distributed or concentrated loads within the model. Loads were applied directly to the arch ribs, to the spandrel columns and walls, or through the deck, as appropriate.
8. The original decorative concrete railing was considered for dead load in the As-Built analysis, while the heavier railing currently installed was considered in the As-Configured and As-Inspected analyses.
9. The $1^{\prime \prime}$ thick concrete wearing surface was considered for the As-Configured and As-Inspected analyses only.
10. The live load utilized for the analysis of each beam consists of a uniform distributed load of 80 psf from the original design plans with a tributary area of half of the deck. A 90 psf pedestrian load was utilized for the Inventory level analysis, while a 90 psf pedestrian load and H5 truck were utilized concurrently for the Operating level analysis. The extents and position of the live load was varied in order to create maximum load effects on the structure, based on recommendations of load positions for pedestrian loading on arches and frames, as well as applied along the full length of the structure.
11. Transverse live load distribution factors for the H 5 truck in the Operating level analysis were calculated by the lever rule.
12. In order to be conservative and due to the uncertainty of placement of Truscon bars based on the original plans, concrete clear cover was assumed to be $21 / 2^{\prime \prime}$ for all reinforcement.
13. Axial-moment interaction diagrams were developed based on KDOT Column Expert v6.0 utilizing the arch rib section properties, provided reinforcement, and allowable stresses. The arch rib sections were input into the program as symmetric, and interaction diagrams were plotted assuming unconfined concrete.
14. Services loads from the STAAD output were charted on axial-moment interaction diagrams for each arch rib section for the appropriate arch rib members, and the ratio of the governing load effects to the capacity shown on the interaction diagram were used in order to determine the capacity to demand ratios for each member.
15. Based on photographs from the field investigation and field measurements from previous analysis, $1 / 8^{\prime \prime}$ deep section loss was assumed for the reinforcing steel in arch ribs in the As-Inspected analysis.

Based on the results of the structural analysis for the original design loading, the capacity to demand ratios for the arch ribs are above 1.0 for all analysis alternatives. The As-Built capacity to demand ratio was calculated to be 1.11, indicating that the arch ribs satisfy the original design criteria for the structure. The As-Configured capacity to demand ratio is 1.07 due to the added dead load from the concrete wearing surface and newer bridge railing. The As-Inspected capacity to demand ratio is 1.22 . For this analysis alternative, despite the decrease in reinforcing steel area due to section loss, the capacity to demand ratio increases because the arch ribs function primarily in compression and ultimate compressive strength is increased in this alternative due to concrete testing.

The capacity to demand ratios for the longitudinal spandrel beams for modern pedestrian bridges loadings are shown in Table 5.

Bridge Element	Capacity-to-Demand Ratios (ASD)					
	As-Built		As-Configured		As-Inspected	
	Inventory (90 psi)	Operating (90 psf + H5)	Inventory (90 psi)	Operating (90 psf + H5)	Inventory (90 psi)	Operating $\text { (} 90 \text { psf + H5) }$
Arch Rib	1.14	1.55	1.07	1.50	1.23	1.69

Table 5 - Summary of structural analysis results (presented as capacity to demand ratios at both Inventory and Operating levels) for the arch ribs based on modern pedestrian bridge loads.

All capacity to demand ratios for the arch ribs are above 1.0 under current pedestrian bridge design loads. The AsBuilt capacity to demand ratio is 1.14 for Inventory level and 1.55 for Operating level, indicating that the arch ribs in the original structure was designed with sufficient strength to carry these modern loads. The As-Inspected capacity to demand ratio is 1.23 for Inventory level and 1.69 for Operating level. Despite accounting for additional loads and section loss of reinforcing steel, the capacity to demand ratios for the arch ribs in the As-Inspected condition are higher than those in the As-Built because of the additional compressive strength considered due to concrete testing. Because arch ribs function primarily as compression members, this higher strength provides a significant increase in capacity. As such, the analysis results indicate that the arch ribs are capable of carrying modern pedestrian design loads in its current configuration with all existing factors included.

CONCLUSIONS AND RECOMMENDATIONS

Based on the results of the structural analysis for original design loads with design-level ASD allowable stresses, the primary load carrying bridge elements exceed the 1.0 capacity to demand ratio utilizing ASD methodology where a factor of 0.4 was used for the allowable stresses of the concrete and a factor of approximately 0.5 was used for steel, per AASHTO Article 8.15.2. TranSystems believes the results of our analysis best corroborate the original design intent of the structure and demonstrates that the bridge has sufficient structural capacity to carry the loading specified at the time of construction. Furthermore, our analysis verifies that based on the current configuration and condition of the bridge, the bridge components maintain their safe loading capacity.

In addition, TranSystems performed a structural analysis of the bridge for modern code-prescribed design loadings. This analysis is based on a 90 psf pedestrian loading at the Inventory level, and a 90 psf pedestrian loading in conjunction with an H5 Truck (5-ton maintenance vehicle) at the Operating level. For this analysis, allowable stresses for Inventory and Operating levels utilized for reinforcing steel and concrete are based on AASHTO MBE Tables 6B.5.2.3-1 and 6B.5.2.4.1-1. The capacity to demand ratios for the longitudinal spandrel members and arch ribs are all above 1.0 for all three analysis alternatives. The capacity to demand ratios for the deck are above 1.0 for the As-Built and As-Inspected analysis alternatives, while the capacity to demand ratio for the As-Configured analysis alternative is 0.98 . Overall, these results indicate the bridge is capable of carrying these modern design loads in its originally constructed state and in its current condition.

Based on the results of the analysis, the capacity of the primary structural members, in both Inventory and Operating cases, exceed the existing loading condition of the bridge and our recommended future loading cases (representing modern-day loads) and therefore bridge rehabilitation would not require structural strengthening or replacement due to their load-carrying capacity.

In conjunction with the concrete material testing results [see TranSystems' Letter: Lake Park Arch Bridge over Ravine Road - Concrete Testing Results dated June 18, 2018], epoxy injection of the cracks and structural patching of the bridge would be recommended where shallow depth concrete repairs with doweled-in rebar mesh could be implemented for long term aesthetic improvements. These types of concrete repairs, along with the application of a concrete sealant as a 5 year routine maintenance item, would prevent further concrete and steel deterioration and would eliminate potential falling hazards due to spalling concrete and extend the service life for another 50 years.

If you have any questions, comments, or require further information, please contact me at wrweir@transystems.com or 216-408-5394.

Very truly yours,

Wesley Weir, P.E.
Senior Bridge Engineer / Vice President

Calculations Original Design Loads

LAKE PARK ARCH RRIDGE - LOAD EATING

LOAD RATANG ASSUMPTIOAS

- Normal Weight Concrete
weiant $=150$ pef
- Compressive Strenapth

4) As-buit : $f_{c}^{\prime}=1,600$ psit (based pn 400 ps" allowable from plas
b) Concrete 7esting: Say $f_{c}^{\prime}=2000$ pil wi sesety factor 4)

- Keintorcing Steel

4 Khan eme Truseon histerieal bar systems
\rightarrow Tens:ine struenth : $f_{y}=33 \mathrm{ksi}$ (based on 16,00 ftr abloweble from

- Live locding: 80 psf. (from orbineal plans) phons)

GEOMETRY
(i) $1^{1 \prime}$ dicm.

Truscon bor
$5 y \mathrm{mma}$
Olosit 4
(1) $3 / 4^{\prime \prime}$ diant.
i (2) $1^{\prime \prime} \times 3^{n}$ Kammbers (foll leroph)

ANALYSIS ALTERNATIVES
\#1) AS-Bunt - Consists of the ongiren structum in its as constructed cordition with nrigiral sectma propertes, gemmetry, material speritudons cte.

 such Gs newal railings or weaning surfaces, with ariamal as-bwitt section properties ad material speeifirathon
43) As-15 - conists of ekishny Struadure, cccounting far modisicatons he fte stachur, sertam toss, matriat testing, etc.

TranSystems

Made By: DWS	Date: $7 / 24 / 18$	Jot Na: P402 180060	
Checked By: Ss W	Date:	$7 / 25 / 8$	Sheet No.

LAKE PARK ARCH BRIDGE - LOAN RATING

DEAD La dds

- Arch weight with be modubed with self weight within STAAB will additional load applied for extra section not modeled.
- Deck and parapet weight will be module as uniform distributed load (each arch line supports one parapet t half of heck)
- Struts and walls will be modeled with point loads.
- Sparer wall impure as combination of verymag distributed load and concentrated load based um had calculantume.

Arch Dead Load:

$$
\text { Weight }=(0.15 \mathrm{kcf})(9112)\left(11^{11} / 12\right)=0.103 \mathrm{k} / \mathrm{ft}
$$

(Remaining ares dead load covered by sellwight in STAAD)

Arch section

Deck and Rasapet:

$$
A_{s-B u i l t}=0.98 \mathrm{k} / C_{4}, \underset{(A l s o \text { As. is) }}{A_{s} \text { configure }}=1.13 \mathrm{k} / \mathrm{ft}
$$

Walls :
(see add itional calculations for calculysis alternatives)

Five 8" thick Bic walls extend from underside of deck to bottom of arch ribs. theight varies and was scaled off drawings imported) int CAD. Wats are 12' wide, each arch corries half.
$4^{\prime}-6^{\prime \prime}$ wall: $\quad(0.15 \mathrm{kel})\left(8^{\prime \prime} / 12\right)\left(4.5^{\prime}\right)\left(1 z^{\prime} / 2\right)=2.7^{\text {kips }}$ (midspen)
7'- $6^{\prime \prime}$ wall: $\quad 4 \quad\left(7.5^{\prime} \mid " \quad 4=4.5\right.$ kips (at end of teardrop)
$16^{\prime}-6^{\prime \prime}$ wall: " is (16.5^{\prime}) is $=9.9$ kips (between openings)
Struts:
Based on photographs, says struts are $16^{\prime \prime}$ talk $\times 12^{\prime \prime}$ wide.

$$
\text { Weight }=(0.15 \mathrm{kof})(16 / 12)\left(12^{\prime \prime} / 12\right)\left(12^{1} / 2\right)=1.2 \text { kips }
$$

LAKE PARK ARCH RIDGE LOAD RATING
Spandrel walls:

(1) SRANDREL REAMS: $q_{1}=(0.15 \mathrm{kcf})\left(2.667^{\prime}\right)\left(12^{\prime \prime} / 12\right)=0.40 \mathrm{k} / \mathrm{ft}$
(2) Theatre pomp: use trapezoidal distributed load over 24^{\prime} length

$$
\begin{aligned}
& g_{\text {start }}=(0.15 \mathrm{ket})\left(3.333^{\prime}\right)\left(12^{\prime \prime} / 12\right)=0.50 \mathrm{k} / \mathrm{ft} \\
& g_{\text {end }}=(0.15 \mathrm{ket})\left(8^{\prime \prime} / 12\right)\left(12^{\prime \prime} / 12\right)=0.10 \mathrm{k} / \mathrm{ft}
\end{aligned}
$$

 arch elements in SHAD (length measured 6.5^{\prime} in STab)

$$
\begin{aligned}
& \text { width }=5^{\prime}-6^{\prime \prime} \text { average } \\
& \text { Height }=16.5^{\prime}-4.5^{\prime}-2.667^{\prime}=9.333^{\prime} \\
& \therefore g_{3}=(0.5 \mathrm{kcf})\left(9.333^{\prime}\right)\left(5.5^{\prime}\right)(12 / 12)\left[1 / 6.5^{\prime \prime}\right)=1.18 \mathrm{k} / \mathrm{ft}
\end{aligned}
$$

(4) EELOW CIRCBLAQ Rpentak: Inure this ene due to proximity to sprimelime and this portion bring monolithic with portion of wat beyond suing lime.

TranSystems

Made By: Dune	Date $7 / 25 / 18$	Job No P402180060
Checked By. STu	Date:	
		Sheet No.

LAKE PARK ARCH BRIDGE - LOAD RATING
DEAD LOAD - AS-EULT IS. AS CONFIGURED/AS-IS

The asrbuilt structure consists of a $6^{\prime \prime}$ Kit deck with no weaning surface and a Rice mailing with posts, openings, ind decareata balusters.

For the as.confiqued ard as -is analyses, consider the updated railing detain consisting of a solid railing wi decorative panels. Also, a concrete ween surface appeors to have been added $t o$ il de strodure.

As-Built: Weight $=0.56 \mathrm{k} / \mathrm{ft}+0.42 \mathrm{k} / \mathrm{kt}=\underline{0.98 \mathrm{k} / \mathrm{ft}}$

- Deck: $(0.15 \mathrm{kef})(6 / 12)(15 / 2)=0.56 \mathrm{k} / 6$
- Railing $:\left[(0.15 \mathrm{kCf})\left[\left(1.667^{\prime}\right)\left(4^{\prime}\right)\left(12^{\prime 2}\right)+\left(8.333^{\prime}\right)\left(\frac{14 \times 10}{12^{2}}+\frac{12 \times 14}{12^{2}}\right)\right]+13(0.041 \mathrm{k})\right] \times 1 / 10^{\prime}$

Decorative Baluster (top)

- 13 balusters per bay
- Scaling from plans, balusters appear to be $24^{\prime \prime}$ high, and diameter varies from $21 / 2^{\prime \prime}$ to $6^{\prime \prime}$ (say $5^{\text {beverage }}$) \therefore Volume $=(2) \pi / 4(5 / 8)^{2}=0.273 f^{3}$ \therefore Weight $=(0.15)(0.23)=0.041 \mathrm{~K}$

As-Configured / As - Is: Weight $=0.66 \mathrm{k} / \mathrm{ft}+0.47 \mathrm{k} / \mathrm{ft}=1.13 \mathrm{k} / \mathrm{ft}$

- Deck: $(0.15 \mathrm{kct})\left(\frac{15}{2}\right)\left(\frac{6^{\prime \prime}+1^{\prime \prime}}{12}\right)=0.66 \mathrm{k} / \mathrm{t}$
- Railing: (0.15 kci$)\left(48^{\prime \prime} / 12\right)\left(9.5^{\prime \prime} / 12\right)=0.4^{7} \mathrm{k} / \mathrm{ft}$

Deck thickness meludes $6^{\prime \prime}$ original deck plus $1^{\prime \prime}$ thick concrete wearing surface based on photo of core $\# 3$ from petrographic andysis. Railing dimensions based on field measurements and photographs.

Ravine Concrete Arch Footbridge at Milwaukee Lake Park

A Cultural Heritage Assessment Study and Report

Historic Preservation Office

City of Milwaukee

200 F., Wells Street, Milwakee, Wi 53202
Phone 414-286-57] 2 , fux $414-286$-3004 carlenthatalamilwaukce.gov

Carlen Hatala
Emma Rudd
Leila Saboori
Nader Sayadi
I.AKビPARK FOOTBRITGG

GILES JROULCOI NO: 1 M- 1803020 , MII WADKEEE, WI

PHOTO: 1

Deck Core (5" long sample)

SAMPLE ID:
3
DESCHIPIION: The overall profile of the come as revived, with the top sulate oricntud to the lell.

PIIOTO: 2

SAMPLE ID:
3
DESCRIPTION; The tep surlace of the core as received.

Made By: DUKC	Cate:	$7 / 24 / 18$	Job No. 9462180060
Checked By: CF it	Date: $7 / 25^{1 / 2}$	Sheet No.	

LAKE PARK ARCH BRIDE - LOAD RATTING
ARCH RIB SECTIONS:

LONER ARCH
$-A_{5}=2.19 \mathrm{~m}^{2}$ TP + BoThA

- From springing line TO WALL BETWEEN ARCHITECTMRAL opening $\left(11^{\prime}-0^{\prime \prime} \pm\right)$

MiDDLE ARCH
$-A_{5}=2.44 \mathrm{~m}^{2}$ Tot + ESTTDM

- From will Between OPENINES TO 6-0"士 BEYOND END OF TEARDRD ($24^{\prime-0 " 4}$)

Ignore area to use symmetric. section in analysis) + account for spells

TOP ARCH
$-A_{S}=2,00 \mathrm{~m}^{2}$ $T \mathrm{TP}+\mathrm{BOTTDM}$

- To f porno of ARCH BELOW CONTINUOUS SPANDREL WAL

Treat arch ribs as rectangular beam:

$$
b=12^{\prime \prime}, h=54^{\prime \prime}
$$

Although clear cover cen be asemed as 2", use clear caver of $2 \frac{1}{2}$ " for all members due to uncertainty of placement for additional Truseom bars and to be conservative.

Reinforcement : Use cores of bors only due to bars beng bent for shear throughout arch ribs.
AS-BUILT/AS-CONFLUURED
Top ARCH: (2) $1^{4} \times 3^{\prime \prime}$ khan bars $A_{s}=2 \times\left(1.0 \mathrm{~m}^{2}\right)=2.00 \mathrm{in}^{2}$ \rightarrow Use (2) \#9 bars for analysis

MIDDLE ARCH: (2) "m 3" Khan bars $+(1)^{3 / 4}$ "Truscom bor

$$
a_{s}=2.00 \mathrm{~m}^{2}+0.44 \mathrm{~m}^{2}=2.44 \mathrm{~m}^{2}
$$

$$
\begin{aligned}
& A_{b w r}=\frac{2.44}{3}=0.81 \mathrm{~m}^{2} \\
& d_{\text {bat }}=1.02^{34}
\end{aligned}
$$

\rightarrow Use (3) custom bars
Lower ARCH" (2) 1" $\times 3^{\prime \prime}$ Truscon bars + (1) 1"中 Tuscon bur

$$
A_{s}=2.00+0.79=2.79 \mathrm{~m}^{2}
$$

$$
\begin{aligned}
& A_{\text {per }}=2.19 / 3=0.93 \mathrm{~m}^{2} \\
& d_{\text {bar }}=1.09 \mathrm{~m}^{2}
\end{aligned}
$$

\rightarrow Use (3) custom bass 5

LAKE PARK ARCH BRIDGE-LNAD RATING

AS-INSPECTED

- Account for additional compressive capacity due to concrete testing with $f_{c}^{\prime}=2000 \mathrm{ps}:\left(\therefore f_{c}=0.4(2000)=800 \mathrm{psi}\right)$
- Include section loss on reinforcement due to corrosion based on field measurements. From freed muestiagtion, exposed $1^{\prime \prime} \times 3^{\prime \prime}$ Khan bor cores measured $7 / 8^{\prime \prime} \times 7 / 8^{\prime \prime} \therefore$ Assume $1 / 8^{\prime \prime}$ section loss.

TOP ARCH: $A_{\text {bar }}=\left(7 / 8^{11} \times 73^{4}\right)=0.766 \mathrm{~m}^{2}$ each
\rightarrow use (2) \#8 bars
MIDDLE $A R C H: A_{S}=2(0.766)+0.44\left(\frac{.625}{.75}\right)=1.84 \mathrm{~m}^{2}$

$$
A_{\text {ber }}=1.84 / 3=0.61 \mathrm{~cm}^{2}
$$

\rightarrow Use (3) 47 bars
LOWER ARCH: $A_{t}=2(0.746)+0.79\left(\frac{.875}{1}\right)^{2}=2.14 \mathrm{in}^{2}$

$$
A_{\text {bo }}=2.14 / 3=0.713 \mathrm{~m}^{2}
$$

$$
d_{\text {br e }}=0.95^{11}
$$

\rightarrow use (3) custom bars
Beam Defmitions in stand:

Beams 1-4: LOWER ARCH
Beams 5-14: MiDDLE ARCH
Beans 15-20: TDP ARCH

$$
1 \frac{1}{2} \times \frac{1}{2} " \text {. Area } .38^{\circ} \text { "Weight } 1.4^{*} \text { per ft. }
$$

These bats can have any standard size cums as shown in Figure 11 and will be sent in lengths as ortererl. In making calculations for strength of reinforced bean, assume ale area of the entire eris section as here giver.
$22^{\prime \prime} \times \frac{3^{\prime}}{4}$. Area. $78^{\circ "}$ Weight 2.7*perft.

1.... 3. $33^{3} \times 11^{\prime \prime}$ ". Area 2.0" Weight 6.9\#per ff.

Kahn System of Reinforced Concrete

So much actual wort is being done at the present dime with reinforcest
 tilimg pati in buildings, lridges, or other constructions, that the sew nucthod af steel reinforcement hercin clescribed, it is believed, will be of iuterest.
 go well innomu, thatt it is !andly news.ary to enter into wompurison here. Remforced concrete is absolutely fiec of any of the serionts objections whic. exist in the use of these other materials. It is fire poof, and rust proof, hat what is mont advantageous about this type of construction, is the face that its strengeth continually increases witla age.

Reinforced concrete lends itsclf admirably to the construction of walls. colums. floors, roots. and all parts of buidelings: to lriciges, atches, culverts, abutments. retaining walls, tumas, foundations, malway thes, atud in geremal. it replaces, to advantage, all mason'y or sleel comstuction

The Kaln trussen bar consists of a hale truss, struck up directly fron a sing'e folled section, and provides the tensional members only. Cuncrete mithin itseif is an excellent mateicat to take up compressive strans, but is comparatively weak [or renisting tensile strains. The Kalur bat when isabediced in a mass of concrete, the:cforc, supplies surengel to the later mbere disis is

nocst necessary, and the combination of the two materials, forms a complete 1.5ns.s. The main virue of this trussed bar lies int the fact that coucrete is reinforced wherever it is clecmed necessary, that the steel extencls uphatily into the mass, as well ats lying metely along its Imitom edge. This, thent in short, 19 the essence of thes bew type of comstuction, and : futher reating of this pamphlet will show the large number of its applications.
 for concrete heans is just as cssential as the horiontai reinticternent, and in many cases to accomplish this pupose, the lorizonta! rods are surtotirded ly
 engineers that a concrete beant, when testece to destrastimi where wiform Toading, invarably faled by shear at the ents, the lines of rupture comesponding cosely to the lines of principal compressive stress for suth : bean, as is

Reinforced Concrete

Tables

General Description

In these tables it is assumed that floors have been con structed in accordance with the Kahn System of Reinforcement, as illustrated in our catalogue, and that bars have been inverted in their position over supports to procure the effects of contintous beam action.
2. Concrete to be composed of the best grade of Portland Cement, sharp. clean sand and broken stone or gravel, in the proportions of $1: 21 / 2: 5$ for floor slabs, and $1: 2: 4$ for beams. Broken stone or gravel a $1^{\prime \prime}$ ring.
3. Bars to be placed at least $3 / 4^{\prime \prime}$ from the bottom of the beam, and the concrete thorotighly rammed in place.
4. Centering not to be removed in less than two and one-half weeks, if the concrete has not been subjected to frost. If freezing has oceurred, centering must not be removed until every indication of frost is removed. and the concrete thoroughly set.

Tables were calculated for a factor of safety of + . However, when this system is incorporated into a combination of continuous beams, the resultant factor of safety rises to 6 or 7 . This is due to arch action, tension in concrete, continuty, and slab action, as well as numerous other facts which, on accomnt of the difficulty attending their exact calculation, it is deemed advisable to aeglect in these tables.

The following are the usual assumptions made in practice for superimposed loads:
Floors of dwellings and offices. $\quad \gamma 0$ lbs. per sq. ft .
Fioors of churches, theaters, and ball rooms...... 250 " . . " "
Floors of warehouses . 200 to 250 " ". " "
Floors for heavy machinery 250 to to 400 "

Fif. 17.
Sce unte on bottom of page gs.

Reinforced Concrete

Safe londsin humdreds of pounds unitormis distributed for
cencrete beams reinforced with Kahm Trusped Bars

D	Distance betwend ecater of supports in teet																								
	8	9	10	11	12	13	14	51				819	9 20	21 21	25\| 22	2.23	23) 24		25\| 26	627			30		
10	244	$\underline{2} 7$	1951	177	1 Ge	150	$1+0$	130	12	115	108	103	98	\|93	${ }^{3} 89$	85	51	78	875	72			65		1"xir" Bars
12	328	290	2612	237	218	200	186	174	Ti3	153	14 ¢ً	137	130	124	4118	113		104	1100	97			87	P1	
14	394	350	315	286	263	242	225	210	197	185	175	169	155	150	0143	137	7131	126	121	117		108	105		$A=2.84$ ma in
16	448	- 4114	358	326	298	276	256	239	224	211	1.99	188	179	170	0163	155	5149	743	1188	132	128	123	11.9		$\mathrm{W}=0.16 \mathrm{lbs}$
18	508	1in	1015	369	338	312	290	27	254	239	228	${ }^{21} 4$	303	193	3184		169	162	150	150		140	11.5		$\mathrm{L}=12^{\prime \prime} \& 1 \mathbf{B}^{\prime \prime}$
20	568	504	4534	412	378	348	324	302	288	266	252	238	226	P16	1206	197	1189	181	1174	165		156	151	12"	
22	634	564	507	461	429									24	2830		- 21		185	186		175	164		
24	680	605	5443	395	455	418			340	320	302	286	272	-	+124	20	220	217	720	2	194		181		

[^0]Spacing of bars in Kahn Reinforced Floors for various
uniform loads $\mathrm{r}^{\prime} \times 2^{\circ}$ Bars Area=. 78 sq. in.

Spacing above is given in inches,

Client:
Engineer: DWC

```
STAAD SPACE
START JOB INFORMATION
ENGINEER DATE 12-Jul-18
CHECKER DATE 25-Jul-18
JOB NAME LAKE PARK ARCH BRIDGE LOAD RATING
JOB COMMENT ARCH RIBS
ENGINEER NAME DWC
CHECKER NAME SFH
END JOB INFORMATION
INPUT WIDTH 79
UNIT FEET KIP
JOINT COORDINATES
*Node X Y Z
1 0 0 0; 2 2.75 1.789 ; 3 5.5 3.46 ; 4 8.25 5.019 ; 5 11 6.472 0;
6 14 7.942 0; 7 17 9.297 0; 8 20 10.542 0; 9 23 11.68 0; 10 26 12.716 0;
11 29 13.653 0; 12 32 14.493 0; 13 35 15.239 0; 14 38 15.893 0;
15 41 16.456 0; 16 44 16.93 0; 17 47 17.317 0; 18 50 17.616 0;
19 53 17.83 0; 20 56 17.957 0; 21 59 18 0; 22 62 17.957 0; 23 65 17.83 0;
24 68 17.616 0; 25 71 17.317 0; 26 74 16.93 0; 27 77 16.456 0;
28 80 15.893 0; 29 83 15.239 0; 30 86 14.493 0; 31 89 13.653 0;
32 92 12.716 0; 33 95 11.68 0; 34 98 10.542 0; 35 101 9.297 0;
36 104 7.942 0; 37 107 6.472 0; 38 109.75 5.019 0; 39 112.5 3.46 0;
40 115.25 1.789 0; 41 118 0 0;
\begin{tabular}{llllllllll}
50 & 0 & 19 & 0 & \(;\) & 51 & 11 & 19 & 0 & ;
\end{tabular}
\begin{tabular}{llllllllll}
52 & 35 & 19 & 0 & \(;\) & 53 & 41 & 19 & 0 & ;
\end{tabular}
\begin{tabular}{llllllllll}
54 & 47 & 19 & 0 & \(;\) & 55 & 53 & 19 & 0 & ;
\end{tabular}
\begin{tabular}{llllllllll}
56 & 59 & 19 & 0 & \(;\) & 57 & 65 & 19 & 0 & ;
\end{tabular}
\begin{tabular}{lllllllll}
58 & 71 & 19 & 0 & \(;\) & 59 & 77 & 19 & 0
\end{tabular}\(;\)
60 83 19 0 ; 61 107 19 0 ;
62 118 19 0 ;
```

MEMBER INCIDENCES

DEFINE MATERIAL START
ISOTROPIC CONCRETE
E 453600
POISSON 0.17
DENSITY 0.150336

```
O
ALPHA 5e-006
DAMP 0.05
TYPE CONCRETE
STRENGTH FCU 576
ISOTROPIC STEEL
E 4.176e+006
POISSON 0.3
DENSITY 0.489024
ALPHA 6e-006
DAMP 0.03
TYPE STEEL
STRENGTH FY 5184 FU 8352 RY 1.5 RT 1.2
END DEFINE MATERIAL
MEMBER PROPERTY AMERICAN
1 TO 40 PRIS YD 4.5 ZD 1
50 TO 62 PRIS YD 0.6667 ZD 3
70 TO 81 PRIS YD 3.167 ZD 1
CONSTANTS
MATERIAL CONCRETE ALL
MEMBER RELEASE
50 51 61 62 BOTH MY MZ
70 71 START MY MZ
70 71 END MY MZ FX
80 81 END MY MZ
80 81 START MY MZ FX
52 TO 55 57 TO 60 START MY MZ
SUPPORTS
141 FIXED
LOAD 1 LOADTYPE Dead TITLE DEAD LOADS
*ARCH LOAD
SELFWEIGHT Y -1.0 LIST 1 TO 40
MEMBER LOAD
1 TO 40 UNI GY -0.103
*DECK AND PARAPET (AS-BUILT)
MEMBER LOAD
70 TO 81 UNI GY -0.98
****DECK AND PARAPET (AS-CONFIGURED/AS-INSPECTED)
***MEMBER LOAD
***70 TO 81 UNI GY -1.13
*TRANSVERSE WALLS
JOINT LOAD
5 37 FY -9.9
```

Client:
Engineer: DWC


```
MEMBER LOAD
78 UNI GY -0.48 2.75 6
79 TO 81 UNI GY -0.48
LOAD 8 LOADTYPE Live TITLE LIVE LOAD 7
MEMBER LOAD
70 TO 81 UNI GY -0.48
LOAD COMB 11 DL + LL1
11.0 2 1.0
LOAD COMB 12 DL + LL2
11.0 3 1.0
LOAD COMB 13 DL + LL3
11.041.0
LOAD COMB 14 DL + LL4
11.051.0
LOAD COMB 15 DL + LL5
11.061.0
LOAD COMB 16 DL + LL6
11.071.0
FINISH
```

	Job No	Shee			Rev
	Part				
Job Title LAKE PARK ARCH BRIDGE LOAD RATING	Ref				
	By DWC	Date12-Jul-18		Chd SFH	
Client	File Lake Park Arch.std		Date/Time 26-Jul-2018 15:18		

Job Information

	Engineer	Checked	Approved
Name:	DWC	SFH	
Date:	12-Jul-18	25-Jul-18	

Project ID	
Project Name	

Comments

ARCH RIBS

Structure Type	SPACE FRAME

Number of Nodes	54	Highest Node	62
Number of Elements	65	Highest Beam	81

Number of Basic Load Cases	-2
Number of Combination Load Cases	7

Included in this printout are data for:

All	The Whole Structure

Included in this printout are results for load cases:

Type	L/C	
Primary	1	DEAD LOADS
Primary	2	LIVE LOAD 1
Primary	3	LIVE LOAD 2
Primary	4	LIVE LOAD 3
Primary	5	LIVE LOAD 4
Primary	6	LIVE LOAD 5
Primary	7	LIVE LOAD 6
Primary	8	LIVE LOAD 7
Combination	11	DL + LL1
Combination	12	DL + LL2
Combination	13	DL + LL3
Combination	14	DL + LL4
Combination	15	DL + LL5
Combination	16	DL + LL6
Combination	17	DL + LL7

Load 1 : Axial Force

Dead Load - Axial Force

Beam End Forces

Sign convention is as the action of the joint on the beam.

								Axial
Beam	Shear		Torsion		Bending			

1	1	$1: D E A D ~ L O A D$	277.325	3.318	0.000	0.000	0.000	144.802
		$11: D L+$ LL1	297.037	-1.059	0.000	0.000	0.000	113.143
		$12: D L+$ LL2	308.484	5.237	0.000	0.000	0.000	179.439
		13:DL + LL3	309.006	-5.648	0.000	0.000	0.000	53.642
		$14: D L+$ LL4	296.514	9.826	0.000	0.000	0.000	238.940
		$15: D L+$ LL5	316.226	5.450	0.000	0.000	0.000	207.282
		$16: D L+$ LL6	289.295	-1.271	0.000	0.000	0.000	85.300
		$17: D L+$ LL7	328.195	0.860	0.000	0.000	0.000	147.780
	2	1:DEAD LOAD	-275.931	-1.174	0.000	0.000	0.000	-137.433
		11:DL + LL1	-295.642	3.203	0.000	0.000	0.000	-120.133
		$12: D L+$ LL2	-307.089	-3.094	0.000	0.000	0.000	-165.773

		13:DL + LL3	-307.612	7.792	0.000	0.000	0.000	-75.68
		14:DL + LL4	-295.120	-7.683	0.000	0.000	0.000	-210.219
		15:DL + LL5	-314.831	-3.306	0.000	0.000	0.000	-192.920
		16:DL + LL6	-287.900	3.415	0.000	0.000	0.000	-92.987
		17:DL + LL7	-326.801	1.283	0.000	0.000	0.000	-148.474
2	2	1:DEAD LOAD	275.764	9.655	0.000	0.000	0.000	137.433
		11:DL + LL1	295.601	5.887	0.000	0.000	0.000	120.133
		12:DL + LL2	306.849	12.532	0.000	0.000	0.000	165.773
		13:DL + LL3	307.706	1.668	0.000	0.000	0.000	75.687
		14:DL + LL4	294.744	16.751	0.000	0.000	0.000	210.219
		15:DL + LL5	314.581	12.982	0.000	0.000	0.000	192.920
		16:DL + LL6	287.869	5.436	0.000	0.000	0.000	92.987
		17:DL + LL7	326.686	8.763	0.000	0.000	0.000	148.474
	3	1:DEAD LOAD	-274.462	-7.512	0.000	0.000	0.000	-109.812
		11:DL + LL1	-294.298	-3.743	0.000	0.000	0.000	-104.640
		12:DL + LL2	-305.547	-10.388	0.000	0.000	0.000	-128.897
		13:DL + LL3	-306.403	0.476	0.000	0.000	0.000	-73.770
		14:DL + LL4	-293.442	-14.607	0.000	0.000	0.000	-159.767
		15:DL + LL5	-313.278	-10.838	0.000	0.000	0.000	-154.596
		16:DL + LL6	-286.567	-3.293	0.000	0.000	0.000	-78.942
		17:DL + LL7	-325.383	-6.619	0.000	0.000	0.000	-123.725
3	3	1:DEAD LOAD	274.108	15.819	0.000	0.000	0.000	109.812
		11:DL + LL1	294.050	12.652	0.000	0.000	0.000	104.640
		12:DL + LL2	305.092	19.635	0.000	0.000	0.000	128.897
		13:DL + LL3	306.277	8.802	0.000	0.000	0.000	73.770
		14:DL + LL4	292.865	23.485	0.000	0.000	0.000	159.767
		15:DL + LL5	312.806	20.319	0.000	0.000	0.000	154.596
		16:DL + LL6	286.336	11.968	0.000	0.000	0.000	78.942
		17:DL + LL7	325.034	16.468	0.000	0.000	0.000	123.725
	4	1:DEAD LOAD	-272.893	-13.675	0.000	0.000	0.000	-63.195
		11:DL + LL1	-292.835	-10.508	0.000	0.000	0.000	-68.033
		12:DL + LL2	-303.877	-17.491	0.000	0.000	0.000	-70.217

Beam End Forces Cont...

			Axial	Shear		Torsion	Bending	
Beam	Node	L/C	$\begin{gathered} \text { Fx } \\ \text { (kip) } \end{gathered}$	$\begin{gathered} \hline \text { Fy } \\ \text { (kip) } \end{gathered}$	$\begin{gathered} \text { Fz } \\ \text { (kip) } \end{gathered}$	$\begin{gathered} \mathbf{M x} \\ \left(\text { kip }^{\prime} \mathrm{ft}\right) \end{gathered}$	$\begin{gathered} \text { My } \\ \left(\text { kip }^{\prime} \mathrm{ft}\right) \end{gathered}$	$\begin{gathered} \mathrm{Mz} \\ \text { (kip }^{\prime} \mathrm{ft} \text {) } \end{gathered}$
		13:DL + LL3	-305.062	-6.658	0.000	0.000	0.000	-49.335
		14:DL + LL4	-291.649	-21.341	0.000	0.000	0.000	-88.915
		15:DL + LL5	-311.591	-18.175	0.000	0.000	0.000	-93.753
		16:DL + LL6	-285.120	-9.824	0.000	0.000	0.000	-44.497
		17:DL + LL7	-323.818	-14.324	0.000	0.000	0.000	-75.055
4	4	1:DEAD LOAD	272.368	21.760	0.000	0.000	0.000	63.195
		11:DL + LL1	292.394	19.186	0.000	0.000	0.000	68.033
		12:DL + LL2	303.225	26.493	0.000	0.000	0.000	70.217
		13:DL + LL3	304.730	15.699	0.000	0.000	0.000	49.335
		14:DL + LL4	290.889	29.979	0.000	0.000	0.000	88.915
		15:DL + LL5	310.915	27.405	0.000	0.000	0.000	93.753
		16:DL + LL6	284.704	18.273	0.000	0.000	0.000	44.497
		17:DL + LL7	323.251	23.919	0.000	0.000	0.000	75.055
	5	1:DEAD LOAD	-269.520	-16.371	0.000	0.000	0.000	-3.897
		11:DL + LL1	-289.547	-13.797	0.000	0.000	0.000	-16.741
		12:DL + LL2	-300.377	-21.104	0.000	0.000	0.000	3.802
		13:DL + LL3	-301.883	-10.311	0.000	0.000	0.000	-8.886
		14:DL + LL4	-288.041	-24.590	0.000	0.000	0.000	-4.053
		15:DL + LL5	-308.068	-22.016	0.000	0.000	0.000	-16.897
		16:DL + LL6	-281.857	-12.885	0.000	0.000	0.000	3.957
		17:DL + LL7	-320.404	-18.530	0.000	0.000	0.000	-9.042
5	5	1:DEAD LOAD	252.759	-8.361	0.000	0.000	0.000	3.897
		11:DL + LL1	272.855	-10.324	0.000	0.000	0.000	16.741
		12:DL + LL2	279.762	-10.233	0.000	0.000	0.000	-3.802
		13:DL + LL3	285.292	-13.433	0.000	0.000	0.000	8.886
		14:DL + LL4	267.325	-7.124	0.000	0.000	0.000	4.053
		15:DL + LL5	287.421	-9.087	0.000	0.000	0.000	16.897
		16:DL + LL6	265.196	-11.470	0.000	0.000	0.000	-3.957
		17:DL + LL7	299.857	-12.196	0.000	0.000	0.000	9.042
	6	1:DEAD LOAD	-249.879	14.239	0.000	0.000	0.000	-41.649
		11:DL + LL1	-269.975	16.202	0.000	0.000	0.000	-61.049
		12:DL + LL2	-276.881	16.112	0.000	0.000	0.000	-40.205
		13:DL + LL3	-282.411	19.311	0.000	0.000	0.000	-63.581
		14:DL + LL4	-264.445	13.003	0.000	0.000	0.000	-37.674
		15:DL + LL5	-284.540	14.966	0.000	0.000	0.000	-57.074
		16:DL + LL6	-262.315	17.348	0.000	0.000	0.000	-44.180
		17:DL + LL7	-296.977	18.075	0.000	0.000	0.000	-59.606
6	6	1:DEAD LOAD	250.202	-6.393	0.000	0.000	0.000	41.649
		11:DL + LL1	270.350	-7.725	0.000	0.000	0.000	61.049
		12:DL + LL2	277.250	-7.418	0.000	0.000	0.000	40.205
		13:DL + LL3	282.878	-10.442	0.000	0.000	0.000	63.581
		14:DL + LL4	264.722	-4.701	0.000	0.000	0.000	37.674
		15:DL + LL5	284.870	-6.032	0.000	0.000	0.000	57.074
		16:DL + LL6	262.730	-9.111	0.000	0.000	0.000	44.180

Beam End Forces Cont...

			Axial	Shear		Torsion	Bending	
Beam	Node	L/C	$\begin{gathered} \text { Fx } \\ \text { (kip) } \end{gathered}$	$\begin{gathered} \text { Fy } \\ \text { (kip) } \end{gathered}$	$\begin{gathered} \hline \text { Fz } \\ \text { (kip) } \end{gathered}$	$\begin{gathered} \mathbf{M x} \\ \left(\text { kip }^{\prime} \mathrm{ft}\right) \end{gathered}$	$\begin{gathered} \text { My } \\ \text { (kip-ft) } \end{gathered}$	$\begin{gathered} \mathrm{Mz} \\ \left(\text { kip }^{\prime} \mathrm{ft}\right) \end{gathered}$
		17:DL + LL7	297.398	-8.749	0.000	0.000	0.000	59.606
	7	1:DEAD LOAD	-249.146	8.732	0.000	0.000	0.000	-66.543
		11:DL + LL1	-269.294	10.063	0.000	0.000	0.000	-90.327
		12:DL + LL2	-276.194	9.756	0.000	0.000	0.000	-68.472
		13:DL + LL3	-281.822	12.780	0.000	0.000	0.000	-101.803
		14:DL + LL4	-263.666	7.039	0.000	0.000	0.000	-56.996
		15:DL + LL5	-283.814	8.370	0.000	0.000	0.000	-80.779
		16:DL + LL6	-261.674	11.449	0.000	0.000	0.000	-78.020
		17:DL + LL7	-296.342	11.088	0.000	0.000	0.000	-92.256
7	7	1:DEAD LOAD	249.297	-1.038	0.000	0.000	0.000	66.543
		11:DL + LL1	269.476	-1.747	0.000	0.000	0.000	90.327
		12:DL + LL2	276.363	-1.227	0.000	0.000	0.000	68.472
		13:DL + LL3	282.082	-4.076	0.000	0.000	0.000	101.803
		14:DL + LL4	263.758	1.102	0.000	0.000	0.000	56.996
		15:DL + LL5	283.937	0.393	0.000	0.000	0.000	80.779
		16:DL + LL6	261.903	-3.367	0.000	0.000	0.000	78.020
		17:DL + LL7	296.543	-1.936	0.000	0.000	0.000	92.256
	8	1:DEAD LOAD	-248.327	3.377	0.000	0.000	0.000	-73.713
		11:DL + LL1	-268.506	4.085	0.000	0.000	0.000	-99.799
		12:DL + LL2	-275.393	3.566	0.000	0.000	0.000	-76.256
		13:DL + LL3	-281.111	6.415	0.000	0.000	0.000	-118.841
		14:DL + LL4	-262.787	1.236	0.000	0.000	0.000	-57.214
		15:DL + LL5	-282.966	1.945	0.000	0.000	0.000	-83.300
		16:DL + LL6	-260.932	5.706	0.000	0.000	0.000	-92.755
		17:DL + LL7	-295.572	4.275	0.000	0.000	0.000	-102.342
8	8	1:DEAD LOAD	248.313	4.274	0.000	0.000	0.000	73.713
		11:DL + LL1	268.504	4.187	0.000	0.000	0.000	99.799
		12:DL + LL2	275.372	4.918	0.000	0.000	0.000	76.256
		13:DL + LL3	281.176	2.247	0.000	0.000	0.000	118.841
		14:DL + LL4	262.701	6.858	0.000	0.000	0.000	57.214
		15:DL + LL5	282.892	6.771	0.000	0.000	0.000	83.300
		16:DL + LL6	260.984	2.334	0.000	0.000	0.000	92.755
		17:DL + LL7	295.563	4.831	0.000	0.000	0.000	102.342
	9	1:DEAD LOAD	-247.426	-1.935	0.000	0.000	0.000	-63.752
		11:DL + LL1	-267.617	-1.848	0.000	0.000	0.000	-90.117
		12:DL + LL2	-274.485	-2.580	0.000	0.000	0.000	-64.227
		13:DL + LL3	-280.288	0.092	0.000	0.000	0.000	-115.384
		14:DL + LL4	-261.813	-4.520	0.000	0.000	0.000	-38.961
		15:DL + LL5	-282.005	-4.433	0.000	0.000	0.000	-65.325
		16:DL + LL6	-260.097	0.005	0.000	0.000	0.000	-89.019
		17:DL + LL7	-294.676	-2.493	0.000	0.000	0.000	-90.592
9	9	1:DEAD LOAD	246.864	8.235	0.000	0.000	0.000	63.752
		11:DL + LL1	267.049	8.755	0.000	0.000	0.000	90.117
		12:DL + LL2	273.892	9.692	0.000	0.000	0.000	64.227

Beam End Forces Cont...

			Axial	Shear		Torsion	Bending	
Beam	Node	L/C	$\begin{gathered} \text { Fx } \\ \text { (kip) } \end{gathered}$	$\begin{gathered} \text { Fy } \\ \text { (kip) } \end{gathered}$	$\begin{gathered} \hline \text { Fz } \\ \text { (kip) } \end{gathered}$	$\begin{gathered} \mathbf{M x} \\ \left(\text { kip }^{\prime} \mathrm{ft}\right) \end{gathered}$	$\begin{gathered} \text { My } \\ \text { (kip-ft) } \end{gathered}$	$\begin{gathered} \mathrm{Mz} \\ \text { (kipft) }^{2} \end{gathered}$
		13:DL + LL3	279.773	7.196	0.000	0.000	0.000	115.384
		14:DL + LL4	261.168	11.251	0.000	0.000	0.000	38.961
		15:DL + LL5	281.353	11.770	0.000	0.000	0.000	65.325
		16:DL + LL6	259.588	6.676	0.000	0.000	0.000	89.019
		17:DL + LL7	294.077	10.212	0.000	0.000	0.000	90.592
	10	1:DEAD LOAD	-246.056	-5.896	0.000	0.000	0.000	-41.328
		11:DL + LL1	-266.241	-6.416	0.000	0.000	0.000	-66.042
		12:DL + LL2	-273.084	-7.354	0.000	0.000	0.000	-37.177
		13:DL + LL3	-278.965	-4.858	0.000	0.000	0.000	-96.255
		14:DL + LL4	-260.360	-8.912	0.000	0.000	0.000	-6.964
		15:DL + LL5	-280.545	-9.432	0.000	0.000	0.000	-31.679
		16:DL + LL6	-258.781	-4.338	0.000	0.000	0.000	-71.540
		17:DL + LL7	-293.269	-7.873	0.000	0.000	0.000	-61.892
10	10	1:DEAD LOAD	245.772	13.220	0.000	0.000	0.000	41.328
		11:DL + LL1	265.932	14.340	0.000	0.000	0.000	66.042
		12:DL + LL2	272.744	15.481	0.000	0.000	0.000	37.177
		13:DL + LL3	278.697	13.161	0.000	0.000	0.000	96.255
		14:DL + LL4	259.979	16.660	0.000	0.000	0.000	6.964
		15:DL + LL5	280.140	17.780	0.000	0.000	0.000	31.679
		16:DL + LL6	258.537	12.041	0.000	0.000	0.000	71.540
		17:DL + LL7	292.905	16.602	0.000	0.000	0.000	61.892
	11	1:DEAD LOAD	-245.041	-10.881	0.000	0.000	0.000	-3.454
		11:DL + LL1	-265.202	-12.002	0.000	0.000	0.000	-24.647
		12:DL + LL2	-272.014	-13.143	0.000	0.000	0.000	7.804
		13:DL + LL3	-277.967	-10.823	0.000	0.000	0.000	-58.564
		14:DL + LL4	-259.249	-14.321	0.000	0.000	0.000	41.722
		15:DL + LL5	-279.409	-15.442	0.000	0.000	0.000	20.529
		16:DL + LL6	-257.806	-9.702	0.000	0.000	0.000	-37.371
		17:DL + LL7	-292.174	-14.263	0.000	0.000	0.000	-13.389
11	11	1:DEAD LOAD	244.610	18.159	0.000	0.000	0.000	3.454
		11:DL + LL1	264.728	19.878	0.000	0.000	0.000	24.647
		12:DL + LL2	271.503	21.221	0.000	0.000	0.000	-7.804
		13:DL + LL3	277.522	19.079	0.000	0.000	0.000	58.564
		14:DL + LL4	258.709	22.020	0.000	0.000	0.000	-41.722
		15:DL + LL5	278.827	23.739	0.000	0.000	0.000	-20.529
		16:DL + LL6	257.404	17.360	0.000	0.000	0.000	37.371
		17:DL + LL7	291.621	22.940	0.000	0.000	0.000	13.389
	12	1:DEAD LOAD	-243.955	-15.820	0.000	0.000	0.000	49.475
		11:DL + LL1	-264.073	-17.540	0.000	0.000	0.000	33.638
		12:DL + LL2	-270.848	-18.883	0.000	0.000	0.000	70.273
		13:DL + LL3	-276.867	-16.741	0.000	0.000	0.000	-2.768
		14:DL + LL4	-258.054	-19.681	0.000	0.000	0.000	106.679
		15:DL + LL5	-278.172	-21.401	0.000	0.000	0.000	90.842
		16:DL + LL6	-256.749	-15.022	0.000	0.000	0.000	13.069

Beam End Forces Cont...

			Axial	Shear		Torsion	Bending	
Beam	Node	L/C	$\begin{aligned} & \hline \text { Fx } \\ & \text { (kip) } \end{aligned}$	$\begin{gathered} \text { Fy } \\ \text { (kip) } \end{gathered}$	$\begin{gathered} \hline \text { Fz } \\ \text { (kip) } \end{gathered}$	$\begin{gathered} \mathrm{Mx} \\ \text { (kip-ft) } \end{gathered}$	$\begin{gathered} \text { My } \\ (\text { kip ft) } \end{gathered}$	$\begin{gathered} \mathrm{Mz} \\ (\text { kip ft) } \end{gathered}$
		17:DL + LL7	-290.967	-20.602	0.000	0.000	0.000	54.436
12	12	1:DEAD LOAD	243.387	22.957	0.000	0.000	0.000	-49.475
		11:DL + LL1	263.446	25.264	0.000	0.000	0.000	-33.638
		12:DL + LL2	270.179	26.805	0.000	0.000	0.000	-70.273
		13:DL + LL3	276.259	24.841	0.000	0.000	0.000	2.768
		14:DL + LL4	257.367	27.229	0.000	0.000	0.000	-106.679
		15:DL + LL5	277.426	29.537	0.000	0.000	0.000	-90.842
		16:DL + LL6	256.199	22.533	0.000	0.000	0.000	-13.069
		17:DL + LL7	290.239	29.113	0.000	0.000	0.000	-54.436
	13	1:DEAD LOAD	-242.806	-20.618	0.000	0.000	0.000	116.829
		11:DL + LL1	-262.865	-22.926	0.000	0.000	0.000	108.125
		12:DL + LL2	-269.598	-24.467	0.000	0.000	0.000	149.523
		13:DL + LL3	-275.677	-22.502	0.000	0.000	0.000	70.409
		14:DL + LL4	-256.786	-24.891	0.000	0.000	0.000	187.240
		15:DL + LL5	-276.845	-27.198	0.000	0.000	0.000	178.536
		16:DL + LL6	-255.618	-20.195	0.000	0.000	0.000	79.112
		17:DL + LL7	-289.657	-26.774	0.000	0.000	0.000	140.820
13	13	1:DEAD LOAD	229.422	-7.279	0.000	0.000	0.000	-116.829
		11:DL + LL1	248.670	-5.136	0.000	0.000	0.000	-108.125
		12:DL + LL2	253.855	-10.674	0.000	0.000	0.000	-149.523
		13:DL + LL3	261.999	-3.443	0.000	0.000	0.000	-70.409
		14:DL + LL4	240.527	-12.367	0.000	0.000	0.000	-187.240
		15:DL + LL5	259.775	-10.224	0.000	0.000	0.000	-178.536
		16:DL + LL6	242.751	-5.586	0.000	0.000	0.000	-79.112
		17:DL + LL7	273.103	-8.531	0.000	0.000	0.000	-140.820
	14	1:DEAD LOAD	-228.912	9.618	0.000	0.000	0.000	90.888
		11:DL + LL1	-248.160	7.475	0.000	0.000	0.000	88.765
		12:DL + LL2	-253.345	13.012	0.000	0.000	0.000	113.160
		13:DL + LL3	-261.489	5.782	0.000	0.000	0.000	56.246
		14:DL + LL4	-240.017	14.705	0.000	0.000	0.000	145.679
		15:DL + LL5	-259.265	12.562	0.000	0.000	0.000	143.555
		16:DL + LL6	-242.241	7.925	0.000	0.000	0.000	58.369
		17:DL + LL7	-272.593	10.869	0.000	0.000	0.000	111.036
14	14	1:DEAD LOAD	229.096	-2.946	0.000	0.000	0.000	-90.888
		11:DL + LL1	248.273	-0.243	0.000	0.000	0.000	-88.765
		12:DL + LL2	253.617	-5.627	0.000	0.000	0.000	-113.160
		13:DL + LL3	261.546	1.837	0.000	0.000	0.000	-56.246
		14:DL + LL4	240.343	-7.707	0.000	0.000	0.000	-145.679
		15:DL + LL5	259.521	-5.005	0.000	0.000	0.000	-143.555
		16:DL + LL6	242.369	-0.865	0.000	0.000	0.000	-58.369
		17:DL + LL7	272.794	-2.924	0.000	0.000	0.000	-111.036
	15	1:DEAD LOAD	-228.657	5.284	0.000	0.000	0.000	78.328
		11:DL + LL1	-247.834	2.581	0.000	0.000	0.000	84.454
		12:DL + LL2	-253.178	7.966	0.000	0.000	0.000	92.415

Beam End Forces Cont...

			Axial	Shear		Torsion	Bending	
Beam	Node	L/C	$\begin{gathered} \text { Fx } \\ \text { (kip) } \end{gathered}$	$\begin{gathered} \hline \text { Fy } \\ \text { (kip) } \end{gathered}$	$\begin{gathered} \hline \text { Fz } \\ \text { (kip) } \end{gathered}$	$\begin{gathered} \mathbf{M x} \\ \left(\text { kip }^{\prime} \mathrm{ft}\right) \end{gathered}$	$\begin{gathered} \text { My } \\ \left(\text { kip }^{\prime} \mathrm{ft}\right) \end{gathered}$	$\begin{gathered} \mathrm{Mz} \\ (\mathrm{kip} \mathrm{ft}) \end{gathered}$
		13:DL + LL3	-261.108	0.501	0.000	0.000	0.000	58.285
		14:DL + LL4	-239.905	10.046	0.000	0.000	0.000	118.584
		15:DL + LL5	-259.082	7.343	0.000	0.000	0.000	124.710
		16:DL + LL6	-241.930	3.204	0.000	0.000	0.000	52.159
		17:DL + LL7	-272.355	5.263	0.000	0.000	0.000	98.541
15	15	1:DEAD LOAD	217.294	-1.769	0.000	0.000	0.000	-78.328
		11:DL + LL1	234.829	0.677	0.000	0.000	0.000	-84.454
		12:DL + LL2	240.852	-4.636	0.000	0.000	0.000	-92.415
		13:DL + LL3	247.973	1.049	0.000	0.000	0.000	-58.285
		14:DL + LL4	227.709	-5.009	0.000	0.000	0.000	-118.584
		15:DL + LL5	245.244	-2.563	0.000	0.000	0.000	-124.710
		16:DL + LL6	230.437	-1.397	0.000	0.000	0.000	-52.159
		17:DL + LL7	258.388	-2.190	0.000	0.000	0.000	-98.541
	16	1:DEAD LOAD	-216.924	4.108	0.000	0.000	0.000	69.403
		11:DL + LL1	-234.460	1.662	0.000	0.000	0.000	82.959
		12:DL + LL2	-240.483	6.975	0.000	0.000	0.000	74.783
		13:DL + LL3	-247.603	1.289	0.000	0.000	0.000	57.922
		14:DL + LL4	-227.339	7.347	0.000	0.000	0.000	99.820
		15:DL + LL5	-244.875	4.901	0.000	0.000	0.000	113.375
		16:DL + LL6	-230.068	3.735	0.000	0.000	0.000	44.366
		17:DL + LL7	-258.018	4.529	0.000	0.000	0.000	88.338
16	16	1:DEAD LOAD	216.953	2.057	0.000	0.000	0.000	-69.403
		11:DL + LL1	234.412	5.000	0.000	0.000	0.000	-82.959
		12:DL + LL2	240.584	-0.140	0.000	0.000	0.000	-74.783
		13:DL + LL3	247.540	5.746	0.000	0.000	0.000	-57.922
		14:DL + LL4	227.456	-0.886	0.000	0.000	0.000	-99.820
		15:DL + LL5	244.915	2.058	0.000	0.000	0.000	-113.375
		16:DL + LL6	230.081	2.802	0.000	0.000	0.000	-44.366
		17:DL + LL7	258.043	2.803	0.000	0.000	0.000	-88.338
	17	1:DEAD LOAD	-216.652	0.282	0.000	0.000	0.000	72.087
		11:DL + LL1	-234.110	-2.661	0.000	0.000	0.000	94.546
		12:DL + LL2	-240.282	2.478	0.000	0.000	0.000	70.823
		13:DL + LL3	-247.238	-3.407	0.000	0.000	0.000	71.765
		14:DL + LL4	-227.155	3.224	0.000	0.000	0.000	93.604
		15:DL + LL5	-244.613	0.281	0.000	0.000	0.000	116.063
		16:DL + LL6	-229.779	-0.464	0.000	0.000	0.000	49.306
		17:DL + LL7	-257.741	-0.465	0.000	0.000	0.000	93.282
17	17	1:DEAD LOAD	196.905	-1.434	0.000	0.000	0.000	-72.087
		11:DL + LL1	211.215	0.170	0.000	0.000	0.000	-94.546
		12:DL + LL2	219.385	-3.416	0.000	0.000	0.000	-70.823
		13:DL + LL3	224.110	1.040	0.000	0.000	0.000	-71.765
		14:DL + LL4	206.490	-4.285	0.000	0.000	0.000	-93.604
		15:DL + LL5	220.799	-2.682	0.000	0.000	0.000	-116.063
		16:DL + LL6	209.801	-0.564	0.000	0.000	0.000	-49.306

Beam End Forces Cont...

			Axial	Shear		Torsion	Bending	
Beam	Node	L/C	$\begin{gathered} \text { Fx } \\ \text { (kip) } \end{gathered}$	$\begin{gathered} \text { Fy } \\ \text { (kip) } \end{gathered}$	$\begin{gathered} \hline \text { Fz } \\ \text { (kip) } \end{gathered}$	$\begin{gathered} \mathbf{M x} \\ \left(\text { kip }^{\prime} \mathrm{ft}\right) \end{gathered}$	$\begin{gathered} \text { My } \\ \text { (kip-ft) } \end{gathered}$	$\begin{gathered} \mathrm{Mz} \\ \left(\text { kip }^{\prime} \mathrm{ft}\right) \end{gathered}$
		17:DL + LL7	233.694	-1.812	0.000	0.000	0.000	-93.282
	18	1:DEAD LOAD	-196.672	3.772	0.000	0.000	0.000	64.240
		11:DL + LL1	-210.982	2.169	0.000	0.000	0.000	91.533
		12:DL + LL2	-219.152	5.754	0.000	0.000	0.000	57.000
		13:DL + LL3	-223.877	1.299	0.000	0.000	0.000	71.374
		14:DL + LL4	-206.257	6.624	0.000	0.000	0.000	77.159
		15:DL + LL5	-220.566	5.020	0.000	0.000	0.000	104.453
		16:DL + LL6	-209.567	2.903	0.000	0.000	0.000	44.081
		17:DL + LL7	-233.461	4.150	0.000	0.000	0.000	84.294
18	18	1:DEAD LOAD	196.701	1.760	0.000	0.000	0.000	-64.240
		11:DL + LL1	210.959	3.766	0.000	0.000	0.000	-91.533
		12:DL + LL2	219.227	0.411	0.000	0.000	0.000	-57.000
		13:DL + LL3	223.825	4.998	0.000	0.000	0.000	-71.374
		14:DL + LL4	206.361	-0.821	0.000	0.000	0.000	-77.159
		15:DL + LL5	220.620	1.185	0.000	0.000	0.000	-104.453
		16:DL + LL6	209.566	2.992	0.000	0.000	0.000	-44.081
		17:DL + LL7	233.486	2.417	0.000	0.000	0.000	-84.294
	19	1:DEAD LOAD	-196.534	0.579	0.000	0.000	0.000	66.016
		11:DL + LL1	-210.792	-1.427	0.000	0.000	0.000	99.342
		12:DL + LL2	-219.060	1.927	0.000	0.000	0.000	54.720
		13:DL + LL3	-223.658	-2.659	0.000	0.000	0.000	82.888
		14:DL + LL4	-206.195	3.160	0.000	0.000	0.000	71.173
		15:DL + LL5	-220.453	1.154	0.000	0.000	0.000	104.498
		16:DL + LL6	-209.399	-0.653	0.000	0.000	0.000	49.563
		17:DL + LL7	-233.319	-0.078	0.000	0.000	0.000	88.045
19	19	1:DEAD LOAD	176.064	0.123	0.000	0.000	0.000	-66.016
		11:DL + LL1	187.032	0.565	0.000	0.000	0.000	-99.342
		12:DL + LL2	197.486	-0.713	0.000	0.000	0.000	-54.720
		13:DL + LL3	198.834	2.014	0.000	0.000	0.000	-82.888
		14:DL + LL4	185.684	-2.162	0.000	0.000	0.000	-71.173
		15:DL + LL5	196.652	-1.720	0.000	0.000	0.000	-104.498
		16:DL + LL6	187.866	1.572	0.000	0.000	0.000	-49.563
		17:DL + LL7	208.454	-0.271	0.000	0.000	0.000	-88.045
	20	1:DEAD LOAD	-175.965	2.215	0.000	0.000	0.000	62.875
		11:DL + LL1	-186.933	1.773	0.000	0.000	0.000	97.528
		12:DL + LL2	-197.387	3.052	0.000	0.000	0.000	49.067
		13:DL + LL3	-198.735	0.324	0.000	0.000	0.000	85.425
		14:DL + LL4	-185.585	4.501	0.000	0.000	0.000	61.170
		15:DL + LL5	-196.553	4.059	0.000	0.000	0.000	95.822
		16:DL + LL6	-187.767	0.766	0.000	0.000	0.000	50.773
		17:DL + LL7	-208.355	2.610	0.000	0.000	0.000	83.720
20	20	1:DEAD LOAD	175.958	2.707	0.000	0.000	0.000	-62.875
		11:DL + LL1	186.909	3.456	0.000	0.000	0.000	-97.528
		12:DL + LL2	197.395	2.471	0.000	0.000	0.000	-49.067

Beam End Forces Cont...

			Axial	Shear		Torsion	Bending	
Beam	Node	L/C	$\begin{aligned} & \hline \text { Fx } \\ & \text { (kip) } \end{aligned}$	$\begin{gathered} \text { Fy } \\ \text { (kip) } \end{gathered}$	$\begin{gathered} \hline \text { Fz } \\ \text { (kip) } \end{gathered}$	$\begin{gathered} \mathrm{Mx} \\ \text { (kip-ft) } \end{gathered}$	$\begin{gathered} \text { My } \\ \text { (kip ft) } \end{gathered}$	$\begin{gathered} \mathbf{M z} \\ \left(\text { kip }^{2} \mathrm{ft}\right) \end{gathered}$
		13:DL + LL3	198.666	5.235	0.000	0.000	0.000	-85.425
		14:DL + LL4	185.638	0.692	0.000	0.000	0.000	-61.170
		15:DL + LL5	196.590	1.441	0.000	0.000	0.000	-95.822
		16:DL + LL6	187.715	4.486	0.000	0.000	0.000	-50.773
		17:DL + LL7	208.347	3.219	0.000	0.000	0.000	-83.720
	21	1:DEAD LOAD	-175.924	-0.369	0.000	0.000	0.000	67.490
		11:DL + LL1	-186.876	-1.118	0.000	0.000	0.000	104.389
		12:DL + LL2	-197.362	-0.132	0.000	0.000	0.000	52.972
		13:DL + LL3	-198.633	-2.896	0.000	0.000	0.000	97.623
		14:DL + LL4	-185.605	1.646	0.000	0.000	0.000	59.738
		15:DL + LL5	-196.556	0.898	0.000	0.000	0.000	96.637
		16:DL + LL6	-187.681	-2.148	0.000	0.000	0.000	60.724
		17:DL + LL7	-208.313	-0.881	0.000	0.000	0.000	89.871

ARCH RIB CAPACITY

$$
p=A_{\mathbf{2}} / A ;
$$

$P=$ strength of plain concrete column;
$\Gamma^{\nu}=$ " " reinforced column;
${ }_{/_{c}=\text { unit stress in concrete; }}$
/. = " " " steel (not exceeding its clastic limit);
$f_{e l}$ - elastic-limit strength of steel;
$l=$ average unit stress for entire cross-section;
$p^{\prime}=$ steel ratio of the hoops of hooped columns.
Formulas.
For short columns; ratio of length to least width not exceeding 20:

$$
\begin{align*}
& f_{e}=n f_{e} \tag{54}\\
& P^{\prime}=f_{e} A_{c}+f_{n} A_{s} \tag{55}\\
& P^{\prime}=I_{e} A[1+(n-1) p], \tag{56}\\
& \frac{P^{\prime}}{P}=1+(n-1) p . \tag{57}
\end{align*}
$$

If n / c is greater than the elastic-limit strength of the steel, then

$$
\begin{equation*}
P^{\prime \prime}=f_{c} A_{c}+f_{v l} A_{v} \tag{58}
\end{equation*}
$$

Considère's formula for hooped columns:

$$
\begin{equation*}
P^{\prime}=F_{e} A_{e}+F_{e \prime}\left(p+2.4 p^{\prime}\right) A \tag{59}
\end{equation*}
$$

For long columns:

$$
\begin{equation*}
f=\frac{l d(1+(n-1) p]}{1+\frac{1}{10,000}\left(\frac{l}{r}\right)^{2}} \tag{60}
\end{equation*}
$$

- Turneaure and Maurer, 1907-\#6

TranSysterns $>$ Made By
 LOWER ARCH - AS-BUILT / AS-CONFIGURED AXIAL-MOMENT INTERACTION DIAGRAM

\qquad

Date	$7 / 25 / 2018$
Date	$7 / 26 / 2018$

\qquad

Calculations For: Lake Park Arch Bridge - Arch Rib Analysis

\qquad

Date | 7/25/2018 |
| :--- |
| D/26/2018 |

\qquad

Calculations For: Lake Park Arch Bridge - Arch Rib Analysis

Tran ${ }^{\text {Pratem }}$	Made By	DWC	Date	7/25/2018
	Checked By	SFH	Date	7/26/2018

Calculations For: Lake Park Arch Bridge - Arch Rib Analysis

TOP ARCH - AS-BUILT / AS-CONFIGURED
AXIAL-MOMENT INTERACTION DIAGRAM

TranSystems $>$\begin{tabular}{rl}
Made By \& DWC

Checked By \& SFH

\quad

Date $\left.\begin{array}{l}\text { 7/25/2018 } \\
\text { Date }\end{array}\right] / 26 / 2018$

\hline
\end{tabular}

\qquad

Calculations For: Lake Park Arch Bridge - Arch Rib Analysis

LOWER ARCH - AS-INSPECTED
 AXIAL-MOMENT INTERACTION DIAGRAM

TranSystems $>$\begin{tabular}{rl}
Made By \& DWC

Checked By \& SFH

\quad

Date 7/25/2018

Date 7/26/2018
\end{tabular}

\qquad

Calculations For: Lake Park Arch Bridge - Arch Rib Analysis

MIDDLE ARCH - AS-INSPECTED
AXIAL-MOMENT INTERACTION DIAGRAM

Tran ${ }^{\text {Pratem }}$	Made By	DWC	Date	7/25/2018
	Checked By	SFH	Date	7/26/2018

\qquad

Calculations For: Lake Park Arch Bridge - Arch Rib Analysis

TOP ARCH - AS-INSPECTED

AXIAL-MOMENT INTERACTION DIAGRAM

AS-BUILT - LOWER ARCH

Beans 1,2 and 4

AS-BUILT - MIDDLE ARCH

Beans 5, 12,14

AS-BUILT - MIDOLE ARCH

Beams 7,9,10

AS-BULLT - TOP ARCH

Beams 15, 17, 20

AS-CONFIGURED-LOWER ARCH Beams 1,2,4

AS-CONFIGURED - MIDOLE ARCH

Beans 5,12,14

AS-CONFIGURED - MIDDLE ARCH
 Beams 7, 9, 10

Interaction diagram

AS-CONFIGURED - TDP ARCH

Beams 15, 17,20

Interaction diagram

AS-INSPECTED - LOWER ARCH
Beams 1,2,4

AS-INSPECTED - MIODLE ARCH

Beams 5,12,14

AS-INSPECTED - MIDDLE ARCH Beans 7,9,10

AS-Inspected - Top arch

Beams 15, 17, 20

LAKE PARK ARCH BRIDGE - LOAD RATING

CAPACITY TO DEMAND RATIOS - ARCH RIBS

TYPICAL AXIAL -MOMENT INTERACTION DIAGRAM
To determine capacity to demand ratios for arch ribs, chart moments and axial forces from applicable load cases on interaction diagrams. If load case falls within envelope of diagrav, the section has sufficient copach-1 for the applied load. If the load falls outside the bounds of the intrectiom diagram, the applied loading exceeds the capacity of the section (Capacity /Demand Rato kos than bio).

To calculate capacity to demand ratios, calculate the scale factor necessary to make the governing load case m+ersuct the axial-momant interaction curve.

By inspection, lower arch segments govern for all analysis alternatives.

LAKE PARK ARCH BRIDGE - LOAD RATING

CAPACITY TO DEMAND RATES - ARCH RIBS
AS-BUILT: $\frac{\text { Capacity }}{\text { Demand }}=\frac{\sqrt{(266)^{2}+(312)^{2}}}{\sqrt{(238.01)^{2}+(280.62)^{2}}}=\frac{410}{367.96}=1.11$

As-ConflguReD: check two cases then potertionlly govern

$$
\begin{aligned}
& \frac{\text { Capacity }}{\text { Demand }}=\frac{\sqrt{(224)^{2}+(342)^{2}}}{\sqrt{(207.28)^{2}+(314.23)^{2}}}=\frac{408.8}{378.1}=1.08 \\
& \frac{\text { Capacity }}{\text { Demand }}=\frac{\sqrt{(257)^{2}+(320)^{2}}}{\sqrt{(236.54)^{2}+(216.5)^{2}}}=\frac{410.4}{380.8}=1.07 \leftrightarrow \text { Governs }
\end{aligned}
$$

A5-INSPECTED: $\frac{\text { Capacity }}{\text { Demand }}=\frac{\sqrt{(293)^{2}+(365)^{2}}}{\sqrt{(238.94)^{2}+(296.5)^{2}}}=1.22$

Made By: DWC	Date: $7 / 13 / 18$	Job No: P4o2:80060
Checked By: SF u	Date: $7 / 2 / 1 / 3$	Sheet No.

LAKE PARK ARCH BRIDGE - LOAD RATING

LONGITUDINAL SPANDREL MEMBER

Perform analysis of longitudinal spender bean over teardrop opening. Because deck was poured monolithic with spandthe tram, since depth from bottom of beam to top of check

Beam sections

$$
\begin{aligned}
& h=3^{\prime}-2^{\prime \prime} \quad b=12^{\prime \prime} \\
& L=20^{\prime} \quad \text { (simply supported, per plans) }
\end{aligned}
$$

Reinforcement: Two (2):1" $\times 3^{\prime \prime}$ Khan bors

$$
\left(A_{\text {bar }}=1.42 \mathrm{in}^{2}, A_{\text {core }}=(1.0)(1.0)=1.00 \mathrm{in}^{2}\right)
$$

Assume reinforcement is placet in such a manner as to have the strength of the foil bars near midspan, but trussed shear basis ane bert up 45° in shear zones near end, per recommendeotons ot historic. then System e Assume fill boss for middle half of sen (10^{\prime}), only core where bees one bent for shear (5 ' on each end for $1 / 4$ points).

$$
\begin{aligned}
& \therefore A_{5}=2\left(1.42 \mathrm{~m}^{2}\right)=2.84 \mathrm{~m}^{2} \quad \text { (midspon) } \\
& \left.A_{s}=2\left(1.00 \mathrm{~m}^{2}\right)=2.00 \mathrm{in}^{2} \quad \text { (1/4 poinT }\right)
\end{aligned}
$$

Dead Loads:

$$
\begin{aligned}
& \text { Deck }=(0.15 \mathrm{ket})(15 / 2)(6 / 12)=0.56 \mathrm{k} / \mathrm{ft} \\
& \text { [A5-Buitit] } \\
& =(0.15 \mathrm{kct})(15 / 2)\left(\frac{6^{\prime \prime}+1^{2}}{12}\right)=0.66 \mathrm{k} / \mathrm{ft} \\
& \text { [AS-Contingured/At-Inspectem] } \\
& \text { Parapets }=0.42 \mathrm{kift} \quad[A s-B u i l t] \\
& =0.47 \mathrm{k} / \mathrm{kt} \text { [As-Confiagived/As-Inspected] }\left\{\begin{array}{l}
\text { see Arch Dead } \\
\text { Load caleulatrons }
\end{array}\right. \\
& \text { Beam Self weight }=(0.15 \mathrm{ket})(32 / 12)(12 / 12)=0.40 \mathrm{k} / 4 \\
& \therefore g_{D L}=0.56+0.42+0.40=1.38 \mathrm{k} / \mathrm{m} \\
& \text { [As-BuIt] } \\
& \text { g DL }=0.66+0.47+0.40=1.53 \mathrm{kgot}
\end{aligned}
$$

Made By: Duh	Date: $7 / 13 / 18$	Jat No: P4D2180060
Checked By: SEA	Date: $7 / 2 \pi 13$	Sheet No.

LAKE PARK ARCH BRIE - LOAD RATING
Live Load: $g_{L L}=(0.080 k 5 f)(12 / 2)=0.48 \mathrm{kCh}$
Total Local : $g_{\text {tor }}=80 L+8 u$

$$
\begin{aligned}
& 8_{\text {Tor }}=1.38 \mathrm{k} / \mathrm{At}+0.48 \mathrm{k} / \mathrm{ht}=1.86 \mathrm{k} / \mathrm{At} \quad[\mathrm{As}-8 \mathrm{Bitt}] \\
& \hat{G}_{\text {er }}=1.53 \mathrm{k} / \mathrm{st}+0.45 \mathrm{k} / \mathrm{fr}=2.01 \mathrm{k} / \mathrm{H} \quad \text { [As.Configured/As-Inspected] }
\end{aligned}
$$

Moments: Calculate maximum moment at midspen and at 1/4 PT to check both reinforcing configurations

$$
\begin{aligned}
& M_{\text {max }}=g L^{2} / 8 \\
& M_{\text {MART }}=8 a / 2(L-a)
\end{aligned}
$$

As-Buit

$$
\begin{aligned}
& m_{\text {max }}=(1.86 \mathrm{k} / \mathrm{ct})\left(20^{\prime}\right)^{2} 8=93.0 \mathrm{k} \cdot \mathrm{ft} \\
& m_{1 / 4 \mathrm{PT}}=(1.86 \mathrm{k} / 4)\left(5^{1} / 2\right)\left(20^{\prime}-5\right)=69.75 \mathrm{ktt}
\end{aligned}
$$

As-Contigured/As-Inspeded

$$
\begin{aligned}
& m_{\text {max }}=(2.0, \mathrm{k} / \mathrm{kt})^{(20)^{2}} \mathrm{8}=100.5 \mathrm{k} \cdot \mathrm{f} \\
& m_{1 / 49 T}=(2.01 \mathrm{k} / \mathrm{ft})(5 / 2)\left(20^{\prime}-5\right)=75.38 \mathrm{k} \cdot \mathrm{ft}
\end{aligned}
$$

Moment Capacity
midspan: $\quad a=\frac{A_{s f y}}{0.85 f_{c} b}=\frac{(2.84)(16)}{0.85(.64)(12)}=6.96^{\prime \prime}$

$$
\begin{aligned}
m_{\text {all }}=A_{5} f_{y}\left(d-a_{2}\right)=(2.84)(16)\left(35.29-\frac{6.46}{2}\right) & =1445.4 \mathrm{k}-\mathrm{in} \\
& =120.4 \mathrm{k} \cdot \mathrm{~A}_{+}
\end{aligned}
$$

$1 / 4$ Pant : $a=\frac{A_{s} f_{y}}{0.85 f_{2} b}=\frac{(2)(16)}{0.85(.64)(12)}=4.90^{\circ}$

$$
M_{\text {att }}=(2.0)(16)\left(35.29-\frac{4,90}{2}\right)=1050.9 \mathrm{k}-\mathrm{m}=87.57 \mathrm{k} . \mathrm{ft}
$$

LAKE PARK ARCH BRIDGE LOAD RATING
As-Inspected moment Capacity
For As-Injpected analysis, need to also consider concrete testers (use $f_{c}^{\prime}=2000 \mathrm{psi} \rightarrow f_{c}=0.4(2000)=800 \mathrm{p}:$: $)$ and account for section loss on reinforcement.

Based on photographs of spelled areas on spondmel bean, section loss appears to be $1 / 14$ "dep average. Calculate loss percentage based on $1 / 16^{n}$ loss on both sides of the essene and apply to total bar area:

$$
\begin{aligned}
& \% \text { Remaining }=\frac{(15 / 16)^{2}}{(1.0)^{2}}=0.879=87.9 \% \\
& \therefore A_{s}=(0.879)\left(2.84 \mathrm{in}^{2}\right)=2.49 \mathrm{in}^{2} \quad \text { (midspan) } \\
& A_{s}=(0.879)\left(2.00 \mathrm{in}^{2}\right)=1.76 \mathrm{in}^{2} \quad(1 / 4 \text { point })
\end{aligned}
$$

midspen: $a=\frac{A . f_{y}}{0.85 f_{0} b}=\frac{(2.49)(16)}{0.85(0.8)(12)}=4.88^{11}$

$$
M_{\text {all }}=A_{s} f_{y}\left(d=\frac{a}{2}\right)=(2.45)(16)\left(35.24-\frac{4.83}{2}\right)=1308.7 \mathrm{k}=109.0 \mathrm{k} \cdot \mathrm{ft}
$$

$1 / 4$ Points : $a=\frac{A_{s} f_{y}}{0.85 f_{c} b}=\frac{(1.76)(16)}{0.85(0.8)(12)}=3.45^{11}$

$$
M_{\text {ant }}=A_{s} f_{y}\left(d-\frac{a_{2}}{2}\right)=(176)(16)\left(35.29-\frac{3.55}{2}\right)=945.2 k \cdot i m=78.77 k \cdot f_{+}
$$

Capacity to Demand Ratios:
Check capacity to demand ratios at midspen and $1 / 4$ point e for all analysis alternatives

$$
\frac{\text { Capacity }}{\text { Demand }}=\frac{M_{\text {all }}}{M_{m a x}}=\frac{M_{\text {ml }}}{M_{D L}+M_{L L}}
$$

Made By: DWC	Date: $7 / 13 / 18$	Job No P402180060
Checked by S thy	Dale: $7 / 75113$	Sheet No.

LAKE PARK ARCH BRIDGE - LOAD RATING
AS-EUILT
Midspan: $C_{D}=\frac{120.4 k-4}{93.0 k \cdot f+}=1.29$
1/4 Point : $C_{D}=\frac{87.57 \mathrm{kft}}{69.75 \mathrm{kft}}=1.25$ GOVERNS
AS-CONFIGURED

$$
\begin{aligned}
& \text { Midspan: } \frac{C}{D}=\frac{120.4 k \cdot 4}{100.5 \cdot 64}=1.19 \\
& 1 / 4 \text { point : } \frac{C}{D}=\frac{87.57 k \cdot 4}{75.32 \cdot 4}=1.16 \ldots \text { GOVERNS }
\end{aligned}
$$

AS. INSPECTED

$$
\begin{aligned}
& \text { Midspen: } C_{D}=\frac{109.0 \mathrm{k} \cdot \mathrm{Ct}}{100.5 \mathrm{k} \cdot \mathrm{ft}}=1.08 \\
& 1 / 4 \text { Ponat }, C / D=\frac{78.77 \mathrm{k} \cdot 4 \mathrm{t}}{75.38 \mathrm{k} .6 \mathrm{t}}: 1.04 \longleftarrow \text { Governs }
\end{aligned}
$$

Shear capacity
Also check shear capacity of longitudinal spandrel member to determine whether it may govern. Check As-Built case and compare to others to see if calculations need to be performed.

$$
\begin{aligned}
& \text { max } 5 \text { hear }=8 \mathrm{~L} / 2=(1.86 \mathrm{k} / \mathrm{rg})\left(20^{\prime} / 2\right)=18.6 \mathrm{kips} \\
& \text { Max shear stress }=v=\frac{V}{5 . d}=\frac{\left(18.6^{k}\right)(1000)}{\left(12^{\prime}\right)\left(35.29^{\prime \prime}\right)}=43.92 \text { psi }\left[\begin{array}{l}
\text { AAstron } \\
\text { easier } 8.3]
\end{array}\right.
\end{aligned}
$$

Concrete capacity Only

$$
V_{c}=0.95 \sqrt{f_{c}^{\prime}}=0.95 \sqrt{1600 \mathrm{psi}}=38.0 \mathrm{psi}
$$

$\left[\begin{array}{lll}\text { ASH TO } & 8,15,5,2,17\end{array}\right]$

Made By: DWSC	Date.	$7 / 24 / 18$	Job No. P402180060
Checked By: Silt	Date: $7 / 25 / 13$	Sheet No.	

LAKE PARK ARCH BRIDGE - LOAD RATING
Shear Reinforcement

$$
\begin{aligned}
& A_{\psi}=\frac{\left(V-V_{c}\right) b_{\omega} s}{f_{5}(\sin \alpha+\cos \alpha)} \quad \text { [pASHto } 8.15 .5 .8 .3 \text { - Indited Stirps] } \\
& \text { where } A_{v}=2\left(0.795^{\prime \prime}\right)\left(0.25^{\prime \prime}\right)=0.3975 \mathrm{~m}^{2} \\
& \alpha=45^{\circ} \text { (assume) from design pions + Khan standards) } \\
& b_{\omega}=12^{\prime \prime} \\
& s=24^{\prime \prime} \text { (scaled from lions) } \\
& f_{s}=16 \mathrm{ksi} \\
& \frac{A_{v} f_{s}(\sin \alpha+\cos \alpha)}{b_{\omega} s}=\left(v-v_{c}\right)=v_{s} \\
& \frac{\left(0.3975 \mathrm{~m}^{2}\right)(16 \mathrm{ksi})\left(\sin 45^{\circ}+\cos 45^{\circ}\right)}{\left(12^{\prime \prime}\right)\left(24^{\prime \prime}\right)} \times \frac{1040 \mathrm{psi}}{\mathrm{ksi}}=31.23 \mathrm{psi} \\
& \therefore V_{\text {all }}=V_{s}+V_{s}=31.23 p s i+380 p \text { pi }: 69.23 p s i \\
& \text { - } \frac{\text { Capacity }}{\text { Demand }}=\frac{V_{\text {all }}}{V_{\text {Dst }}+V_{u l}}=\frac{69.23 p s i}{43.92 p s i}=1.57
\end{aligned}
$$

Because capacity to demand ratio for. shear is higher than the ratio for moment and embedded shear reinforcement likely exhibits no significent section loss, assume
shear capacity does not govern the lomitudinal spandrel member.

$$
1 \frac{1}{2} \times \frac{1}{2} " \text {. Area } .38^{\circ} \text { "Weight } 1.4^{*} \text { per ft. }
$$

These bats can have any standard size cums as shown in Figure 11 and will be sent in lengths as ortererl. In making calculations for strength of reinforced bean, assume ale area of the entire eris section as here giver.
$22^{\prime \prime} \times \frac{3^{\prime}}{4}$. Area. $78^{\circ "}$ Weight 2.7*perft.

1.... 3. $33^{3} \times 11^{\prime \prime}$ ". Area 2.0" Weight 6.9\#per ff.
8.14.3.6 Walls cxeceding 8 feet in height on filled spandrel arches shall be laterally supported by transwerse diaphragms or counterforts with a slope greater than 45 degrees with the vertical to reduce transuerse stricsses in the arch barel. The top of the arch barel and interior faces of the spandrel walls shall be waterproofed and a drainage system prowided for the fill.

8.15 SERYICE LOAD DESIGN METHOD (ALLOWABLE STRESS DESIGN]

8.15.1 General Requirements

8.15.1.1 Service load stresses shall not exceed the walues given in Article 8.15.2.
8.15.1.2 Developnent and splices of reintorcement shall be as reguired in Articles 8.24 through 8.32.

8.15.2 Allowable Stresses

8.15.2.1 Concrete

Stresses in concrete shall not exceed the following:

8.15.2.1. 1 Flexure

Extreme fiber stress in compression, $f_{s} \ldots \ldots . .0 .40 f_{c}^{\prime}$ Extreme fiber suess in tension for plain concrete, f_{t}.2If If_{r}

Modulus of rupture, $f_{\text {f }}$ from tests, or, if data are not available:

$$
\begin{aligned}
& \text { Nomal weight concrete } 7.5 \sqrt{f_{c}^{\prime \prime}} \\
& \text { "Sand-lightweight" concrete } 6.3 \sqrt{\mathrm{f}_{\mathrm{s}}^{\prime}} \\
& \text { "All-lightweight" concrete } \\
& 5.5 \sqrt{\mathrm{f}_{i}^{\prime}}
\end{aligned}
$$

8.15.2.1.2 Shear

For detailed summary of allowable shear stress, Y_{e} see Article 8.15.5.2.

8.15.2.1.3 Bearing Stres.

The bearing stress, Γ_{3} on loaded area shall not exceed $0.30 \mathrm{f}_{\mathrm{c}}{ }^{*}$.

When the supponting surface is wider on all sides than the loaded area, the allowable bearing stress on the loaded area may he multiplied by $\sqrt{A_{2}} / A_{L^{+}}$but not by more than 2.

When the supporting surface is sloped or stepped, A_{2} may be taken as the area of the lower base of the largest frustrum of the right pyramid or cone contained wholly
within the support and having for its upper base the loaded atea, and having side slopes of 1 vertical to 2 horizontal.

When the loaded area is subjected to high-edge stresses due to deflection or eccentric loading, the allowable bearing stress on the loaded area, including any increase due to the supporting surface being larger than the loaded area, shall be multiplied by a factor of 0.75 .

8.15.2.2 Reinforcement

The tensile stress in the reinforcement, $\mathrm{f}_{\mathrm{s} \text {, }}$ shall not exceed the following:

> Grade 40 reinforcement0000 psi Grade 60 reinforement24,000 psi

In straight reinforcement, the range between the maximum tensile stress and the minimum stress caused by live load plus impact shall not exceed the value given in Article B.16.8.3. Bends in primary reinforcement shall be avoided in regions of ligh-stress range.

8.15.3 Flexure

8.15.3.1 For the investigation of stresses at service loads, the straight-line theony of stress and strain in flexure shall be used with the following assumptions.
8.15.3.2 The strain in teinfortement and concrete is directly proportional to the distance from the neutral axis, except that for deep flexural members with overall depih to span ratios greater than $7 / 5$ for contimuous spans and $1 / 3$ for simple spans, a nonlinear distribution of strain shall be considered.
8.15.3.3 In reidforced concrete members, concrete resists no tension.
8.15.3.4 The modular ratio, $\mathrm{n}=\mathrm{E}_{\mathrm{k}} / \mathrm{E}_{\mathrm{c}}$, may be taken as the nearest whole number (but not less than 6). Except in calculations for deflections, the value of nor lightweight concrete shall be assumed to te the same as for normal weight concrete of the same strength.
8.15.3.5 In doubly reinforced fexutal members, an effective modular ratio of $2 \mathrm{E}_{\mathrm{s}} / \mathrm{E}_{\mathrm{c}}$ shall be used to tramsform the compressiton reinforcement for stress computations. The compressive stress in such reinforcernent shath not be greater than the allowable tensile stress.

8.15.4 Compression Memhers

The combined flexural and axial iond capacily of cotnpression members shall be taken as 35% of that computed
in accordance with the provisions of Article 8.16.4. Slendemess effects shall be included according to the requirements of Article 8.16.5. The temm P_{u} in Equation (8-41) shall be replaced by 2.5 times the design axial load, In_{n} using the provisions of Articles 8.16.4 and 8.16.5, 中 shall be taken as 1.0 .

8.15.5 Shear

8.15.5.1 Shear Stress

8.55.5.j.I Design shear stress, y . shall be computed by:

$$
\begin{equation*}
w=\frac{v}{b_{w} d} \tag{8-3}
\end{equation*}
$$

where V is design shear force at section considered, b_{w} is the width of web, and d is the distance from the extrame compression fiber to the centroid of the lorgitudinal tension reinforcement. Whenever applicable, effects of torsion* shall be included.
S.15.5.1.2 For a circular section, b_{w} shall be the diameter and dreed not be less than the distance from the extreme compression fiber to the centroid of the longitudimal reinforcement in the opposite half of the member.
8.I5.5.1. 3 For tapered webs, b_{w} shall be the average width or 1.2 times the minimum width, whichever is smaller.
8./5.5.1.4 When the reaction, in the direction of the applied shear, introduces compression into the end regions of a member, sections located less than a distance d from the face of support may be designed for the same shear, V, as that computed at a distance d. An exception occurs when major concentrated loads are imposed between that point and the face of support. In that case sections closer than d to the suppori shall be designed for V at distance d plus the major concentrated loads.

8.15.5.2 Shear Stress Carried by Concrete

S.5.5.2.I Shear in Beans and One-Way Slabs and Footings

For members subject to shear and flexure only, the allowable shear stress carried by the concrete, v_{4} may be
*The design criteria For coribinenl torsionsand ghear given in "Building Conde Re-
 may he used.
taken $\operatorname{sis} 0.95 \sqrt{f_{t}^{\prime}}$. A morc detailed calculation of the allowable shear stress can be mude using:

$$
\begin{equation*}
\mathrm{v}_{e}=0.9 \sqrt{\mathrm{f}_{c}^{f}}+1,100 \rho_{w}\left(\frac{\mathrm{~V}}{\mathrm{~d}}\right) \leq 1.6 \sqrt{\mathrm{f}_{c}^{*}} \tag{8-4}
\end{equation*}
$$

Note:
(a) M is the design moment nceuming simultaneously with V at the section being considered.
(b) The guantity Vd/M shall not be taken grenter than 1.0.

8.15.5.2.2 Shear in Compression Members

For menbers subject to axial compression, the allowable shear stress caried by the concrete, ψ_{t-1} may be taken as $0.95 \sqrt{\mathrm{f}_{\mathrm{a}}^{\prime}}$. A mone detailed calculation can be made using:

$$
\begin{equation*}
v_{c}=0.9\left(1+0.0006 \frac{N}{A_{F}}\right)-\sqrt{f_{x}^{\prime}} \tag{8-5}
\end{equation*}
$$

The quantity N / A_{g} shall be expressed in peunds per square inch.

8.I5.5.2.3 Shear in Tension Members

For members subject to axial tension, shear reinforcement shall be designed to carry total shear, unless a more detailed calculation is made using

$$
\begin{equation*}
\mathbf{v}_{\mathrm{o}}=0.9\left(1+0.004 \frac{\mathrm{~N}}{\mathrm{~A}_{\mathrm{g}}}\right) \sqrt{\mathrm{F}_{\mathrm{c}}^{\prime}} \tag{8-6}
\end{equation*}
$$

Note;
(a) N is negative for tension.
(b) The quantity N/A shall be expressed in pounds per square inch.

8.15.5.2.4 Shear in Lightweight Conorete

The provisions for shear stress, v_{c}, canried by the concote apply to nomal weight concrete. When lightweight aggregate concretes are used, one of the following modifications shall apply:
(a) When $f_{c t}$ is specified, the shear stress, v_{e}, statl be modified by substituting $\mathrm{f}_{\mathrm{el}} / 6.7$ for $\sqrt{\mathrm{f}_{c}^{\prime}}$, but the value of $f_{c} / 6.7$ used shall not exceed $\sqrt{\mathrm{f}_{\mathrm{c}}^{\prime}}$.
(b) When $f_{t i}$ is not specified, the shear stress, $v_{c t}$ shall be multiplied by 0.75 for "all-lightweight" concrete, and
0.85 for "sand-lightweight" concrete, I-inear interpolation may be used when partial sand rephicement is used.

8.15.5.3 Shear Stress Carried by Shear Reinforcement

8.15.5.3.I Where design shear stress v exceeds shear stress carried by concrete, v_{i}, shear reinforcement shall be provided in accondance with this article. Shear reinforcement shall also conform to the general requirements of Article 8,19 .
8.15.5.3.2 When shear reinforcement perpendicular to the axis of the member is used:

$$
\begin{equation*}
A_{v}=\frac{\left(v-v_{c}\right) b_{w} 8}{f_{s}} \tag{8-7}
\end{equation*}
$$

8.15.5.3.3 When inclined stimps are used:

$$
\begin{equation*}
A_{v}=\frac{\left(v-v_{c}\right) b_{w} s}{f_{s}(\sin \alpha+\cos \alpha)} \tag{8-8}
\end{equation*}
$$

8.15.5.3.4 Wher shear teinforcement consists of a single bar or a single group of parallel bars all bent up at the same distance from the support:

$$
\begin{equation*}
A_{v}=\frac{\left(v-v_{c}\right) b_{w} d}{f_{s} \sin \alpha} \tag{8-9}
\end{equation*}
$$

Where $\left(w-v_{0}\right)$ shall not exceed $1.5 \sqrt{f_{c}^{r}}$.
8.15.5.3.5 When shear reinforcement consists of a series of parallel bent-up bars or groups of parallel bentup bars at different distances from the support, the required area shall be computed by Equation (8-8).
8.15.5.3.6 Only the center three-fourths of the inclined portion of any longitudinal bent bar shall be considered eftective for shear reinforcement.
8.15.5.3.7 Where more than ore type of shear reinforcement is used to reinforce the same portion of the member, the required area shall be computed as the sum of the values computed for the various types separately. In such computations, v_{0} shall be included only once.
8.15.5.3.8 When $\left(v-v_{c}\right)$ cxceeds $2 \sqrt{\mathrm{f}_{c}^{.5}}$ the maximum spacings given in Article 8.19 shall be reduced by one-half,
8.15.5.3.9 The value of $\left(v-\psi_{e}\right)$ shall not exceed $4 \sqrt{\mathbf{f}_{e}^{\prime}}$.
8.15.5.3.10 When flexural reinforcement lacated within the width of a member used to compute the shear strength is terminated in a tension zone, shear reinforcement shall be provided in accordance with Article 8.24.1.4.

8.15.5.4 Shear Friction

8.15.5.4.1 Provisions for shear-friction are to be applied where it is appropriate to consider shear transfer across a given plane, such as: an existing or potential crack, an interface between dissimilar materials, or an interlace between two concretes cast at different times.
8.I5.5.4.2 A crack shall be assumed to occur along the shear plane considered. Required area of shear-friction reinforcement Avf across the shear plane may be designed using either Article 8.15.5.4.3 or uny other shear transfer design method that results in prediction of strength in substantial agreement with resulis of comprehensive tests. Provisions of Articles 8.15.5.4.4 through 8.15 .5 .4 .8 shall apply for all calculations of shear transfer strength.

8. J5.5.4.3 Shear-ftiction Design Method

(a) When shear-friction reinforcement is perpendicular to the shear piane, area of shtar-friction reinforcement $A_{4 j}$ shall be computed by:

$$
\begin{equation*}
A_{v i}=\frac{V}{f_{i j} \mid \mu} \tag{8-10}
\end{equation*}
$$

where μ is the coefficient of friction in accordance with Article 8.15.5.4.3(c).
(b) When shear-frietion reinforcenent is inclined to the shear plane such that the shear foree produces tension in shear-friction reinforcement, the area of shearfriction reinforcement $A_{\text {wi }}$ shall be computed by:

$$
\begin{equation*}
A_{\mathrm{vt}}=\frac{V}{\mathrm{f}_{\mathrm{s}}\left(\mu \sin \alpha_{\mathrm{f}}+\cos \alpha_{f}\right)} \tag{8-11}
\end{equation*}
$$

where α_{f} is the angle between the shear-friction reinforcement and the shear plane.
(c) Coefficient of friction μ in Equations (8-10) and (8-11) shall be;
concrete placed monolithically 4λ concrete placed against hardened concrete with surface intentionally roughened as specified in, Article 8.15.5.4.7 1.02
concrete placed against hardened concrete not
intentionally roughened 0.6 h
concrete anchored to as-rolled struchural steel by
headed studs or by reinforcing bars (see Article
8.15.5.4.8
0.7λ
where $\lambda=1.0$ for' nomital weight concrete; 0.85 for "sand-lightweight" concrete; and 0.75 for "all lightweight" concrete. Lincat intecpolation may be applied when partial sand replacement is used,
8.15.5.4.4 Shear stress y thall not cxceed 0.09f nor 360 psi .
8.75.5.4.5 Net tension actoss the shear plame shall be resisted by additional reinforcement. Permanent met compression across the shear plane may be taken as additive w the force in the shear-friction reinforcement $A_{v} f_{5}$, when colculating required $A_{4 f}$.
8.J5.5.4.6 Shear-friction reinforcement shall be appropriately placed along the shear plane and shall be anchored to develop the specifed yield strength on both sides by embedment, hooks, or welding to special devices.
8. 5.5 .4 .7 For the purpose of Article 8.15.5.4, when concrete is placed against prevjously hardened concretc, the interface for shear transfer shall be clean and free of laitance. If μ is assumed equal to l.Dh , the interface shall be roughened to a full amplitude of approximately $/ 4$ inch.
R.15.5.4.8 When shear is transferred between steel beans or girders and concrete using headed studs or welded reinforcing bars, steel shall be clean and free of paint.

8.15.5.5 Horizantal Shear Designt for Composite Concrete Flexural Members

8. 5.5.5.5. 7 In a composite member, full transfer of horizontal shear forces shall be assured at contact surfaces of intercomected elements.
8.15.5.5.2 Design of crose sections subject to horizontal shear may be in accondance with provisions of Articles 8.15.5.5.3 or 8.15.5.5.4 or any other shear transfer design method that results in prediction of strength in substantial agreement with results of comprehensive tests.
8.15.5.5.3 Design horizontal shear stress $\psi_{\text {on }}$ at any crose section may be computed by:

$$
\begin{equation*}
\psi_{\mathrm{d} h}=\frac{\mathrm{V}}{\mathbf{b}_{\psi} \mathbf{d}} \tag{B-11~A}
\end{equation*}
$$

where V is the design shear force at the section considered and d is for the entire composite section. Horizontal shear v_{d} shall not exceed permissible horizontal shear w_{h} in accordance with the following:
(a) When the contact surface is clean, fiee of laitance, and intentionally roughened, shear stress ψ_{h} shall not erceed 36 psi .
(b) When minimun ties are prowided in accordance with Article 8.15.5.5.5, and the contact surface is clean and free of laitance, but not intentionally roughened, shear slress y shall not exceed 36 psi .
(c) When minimum ties are provided in accondance with Article 8.15.5.5.5, and the contact surface is clean, free of lailance, and intentionally roughened to a full magnitude of approximately $/ 4$ inch, shear siress W_{h} shall not exceed 160 psi .
(d) For each percent of tie reinforcement crossing the contact surface in excess of the minimum required by Article 8.15 .5 .5 .5 , permissible v_{h} may be increased by $72 \mathrm{f}_{\mathrm{Y}} / 40,000 \mathrm{psi}$.
R.15.5.5.4 1lorizontal shear may be investigated by computing, in any segment not exceeding one-tenth of the span, the actual change in compressive or tensile force to be transferred, and provisions made to iransfer that force as horizontal shear between interconnected elements. Horizontal shear shall not exceed the permissible horizontal shear stress v_{h} in accordance with Article 8.15.5.5.3.

8.15.5.5.5 Ties for Horizomal Shear

(a) When required, a minimum area of tie reinforcement shall be provided between interconnected clements. Tie area shall not be less than $50 \mathrm{~b}_{4} \mathrm{~s} / \mathrm{f}_{\mathrm{yt}}$ and tie spacing s shall not exceed four times the least web width of support element, nor 24 inch.
(b) Ties for horizontal shear may consist of single bers or wire, multiple leg stirtups, or vertical legs of welded wire fabric (smooth or defomed). All ties shall be adequately anchored into interconnected elements by embedment or hooks.

8.15.5.6 Special Provisions for Slabs and Frotings

8. $5,5,5.1$ Shear capacity of slabs and footings in the vicinity of concentrated loads or teactions shall be govetted by the more severe of two conditions:
(a) Beam action for the slab or footing, with a critical section extending in a plane actoss the entife width and located at a distance drom the face of the concentrated lowd or reaction area. For this condition, the slab or fooling shall be designed in accordance with Aricles 8.15.5.1 through 8.15.5.3, except at footings supponted on piles, the shear on the critical section shall be determined in accordance with Article 4.4.11.3.
(b) Two-way ation for the slab or footing, with a critical section perpendicular to the plane of the member and lecated so that its perimeter b_{0} is a minimum, but not closer than $\mathrm{d} / 2$ to the perimeter of the concentrated load or reaction area. For this condition, the slab or looting shall be designed in accordance with Articles 8.15.5.6.2 and 8.15 .5 .6 .3 .
8.15.5.6.2 Design shearstress, $v_{\text {, shall be computed by: }}$ by

$$
\begin{equation*}
v=\frac{v}{b_{0} d} \tag{8-12}
\end{equation*}
$$

where V and b_{0} shall be taken at the critical section defined in Article $8 \cdot 15.5 .6 .1$ (b).
X.15.5.6.3 Design shear stress, y , shall not exceed Y_{c} given by Equation (8 -13) unless shear reinforcement is provided in accordance with Article 8.15.5.6.4.

$$
\begin{equation*}
v_{c}=\left(0.8+\frac{2}{\beta_{c}}\right) \sqrt{f_{z}^{\prime}} \leq 1.8 \gamma_{q} f_{\varepsilon}^{\prime} \tag{8-13}
\end{equation*}
$$

β_{c} is the ratio of long side w short side of concentrated Ioad or reaction area.
8. 15.5 .6 .4 Shear reinforcement consisting of bars or wires may be used in slabs and foolings in accordance with the following provisions:
(a) Shear stresses computed by Equation (8-12) shall be invertigated at the critical section defined in Article g.15.5.6.1(b) and at successive sections moce distant from the support.
(b) Shear stress v_{c} at any section shall not cxeced 0.9 $\sqrt{f_{c}^{\prime}}$ and v shall not exceed $3 \sqrt{f_{c}^{\prime}}$.
(c) Where v exceeds $0.9 \sqrt{\mathrm{f}_{\mathrm{c}}^{\prime}}$, shear reinforcement shall be provided in accordance with Article 8.15.5.3.

8.15.5.7 Special Prowisions Cor Slabs or Box Culverts

For glabs of box culverts under 2 feet or more fill, shear stress v_{c} may be computed by:

$$
\begin{equation*}
\mathrm{w}_{\mathrm{c}}=\sqrt{\mathrm{f}_{\mathrm{c}}^{\prime \prime}}+2.200 \mathrm{p}\left(\frac{\mathrm{Vd}}{\mathrm{M}}\right) \tag{8-14}
\end{equation*}
$$

but ψ_{f} shall not cxceed $1.8 \sqrt{l_{F}^{\prime}}$. For single cell box culverts orly, v_{g} for glabs monolithic with walls need not be taken less than $1.4 \sqrt{f_{s}^{\prime}}$, and v_{c} for slabs simply supported need not be taken less than $1.2 V / \mathrm{f}_{8}^{-1}$. The quantity Vd / M shall not be taken greater than 1,0 whace M is the moment occuring simultaneously with V at the seetion considered. For stabs of box cullwerts under]ess than 2 feet of fill, applicable provisions of Articles 3.24 and 6.4 should be used.

8.15.5.8 Special Provisions for Brackets and Corbels*

8.15.5.8.1 Frovisions of Article 8.15.5.8 shall apply to brackets and corbels with a shear span-to-depth ratio a_{4} / d not greater than unity, and subject to a horizontal tensile force N_{c} not larger than V . Distance d shatl be measured at the face of support.
8.15.5.8.2 Depth at outside edge of bearing area shall nol be less than: 0.5 d .
8.15.5.8.3 The section at the face of support shall be desigred to resist simultaneously a shear V, a moment $\left[\mathrm{Va}_{\mathrm{r}}+\mathrm{N}_{\mathrm{c}}(\mathrm{h}-\mathrm{d})\right]$, and a horizontal tensile force N_{c}. Distance h shall be measured at the face of support.
(a) Design of shear-friction rcinforcement, $A_{\text {wf }}$ to resist shear, V, shall be in accordance with Article 8.15.5.4. For nonnal weight concrete, sheer stress w shall not exceed $0.09 f_{c}^{r}$ not 360 psi. For "all lightweight" of "sand-lightweight" concrete, shear stress v shall not exceed ($\left.6.09-0.03 a_{1} / d\right) f_{9}^{\prime}$ nor (360-126aw/d) psi.
(b) Reinforcement A_{f} to resist moment $\left[\mathrm{Va}_{v}+\mathrm{N}_{\mathrm{f}} \mathrm{h}-\right.$
d)] shall be computed in accordance with Articles 8.15.2 and ${ }^{\text {4.15.3. }}$
(c) Reinforcement A_{n} to tesist tensile force N_{6} shall be computed by $A_{n}=N_{N} / f_{s}$. Tensile force \mathbb{N}_{i} shall nol be taken less than 0.2V unlesg special provisions are made to ayoid tensile fortes.
(d) A rea of primary tension reinforcement, $A_{s,}$, shall be thade cqual to the greater of $\left(A_{1}+A_{4}\right)$, or $\left(2 A_{4}+3+A_{0}\right)$.
8. 35.5 .9 .4 Closed stirmups or ties parallel to $\mathrm{A}_{5 \mathrm{~s}}$ with a total area A_{h} not less than $0.5\left(A_{h_{e}}-A_{n}\right)$, shall be urii-

[^1]formy distributed within two-thirds of the effective depth adjacent to A_{5}.
8.15.5.8.5 Ratio $\rho=A_{d} /$ dd shall not be taken less than $0.04\left(f_{8} / f_{Y}\right)$.
8.15.5.8.6 At the front tace of a bracket or corbel, primary lension reinforcement, $A_{\text {, }}$, shall be anchored by one of the following:
(a) a structural wold to a transverse bar of al least equal size; weld to be designed to develop specilied yield strength f_{y} of A_{s} bars;
(b) bending primary tension bars A_{a} back to form a horizontal lopp; or
(c) some other means of positive anchorage.
8.15.5.8. 7 Bearing area of load on a bracket or corbel shall not project beyond the straight portion of primary tengion bars $A_{s i}$ nor project beyond the interior face of a transwerse anchor bar (if one is provided).

FIGLRE 8.15.5.8

8.16 STRENGTH DESIGN METHOD (LOAD FACTOR DESIGN)

8.16.1 Strength Requirements

8.16.1.1 Required Strength

The required strength of a section is the strength mecessary to resist the factored loads and forces applied to
the sructure in the combinations stipulated in Article 3.22. All sections of structutes and structural members shall have design strengths at least equal to the required strength.

8.16.1.2 Design Slrength

8.I6.I.2.1 The design strenglh provided by a member or cross section in terms of hoad, moment, shear, or stress shall be the nominal strength calculated in accordance with the requirements and assumptions of the slrength-design thethod, multiplied by a strengh-reduction factor ϕ.*
8.16.1.2.2 The strength-reduction factors, ϕ, shall be as follows:
(a) Flexure $\boldsymbol{\text { . }}=0.90$
(b) Shear . $\phi=0.85$
(c) Axial compression withSpirals . $\phi=0.75$ Ties. $\phi=0.70$
(d) Beining on concrete $\phi=0.70$

The value of ϕ may be increased linearly from the value for compression members to the value for flexure as the design axial load strength, $\phi \mathrm{P}_{\mathrm{r}}$ decreases from $0.10 f_{t}^{\prime}$ $A_{\text {I }}$ or ϕP_{h} whichever is smaller, to zero.
8.16.1.2.3 The development and splice lengths of reinforcement specified in Articles 8.24 through 8.32 do nol require a strength-reduction factor.

8.16.2 Design Assumptions

8.16.2.1 The strength design of members for flexure and axial loads shall be based on the assumptions given in this article, and on the satisfaction of the applicable conditions of equilibrium of internal stresses and compatibility of strimes.
8.16.2.2 The strain in reinforcement and concrete is directly proportional to the distance from the neutral axis.
8.16.2.3 The meximum usable strain at the extreme concrete compression fiber is equal to 0.003 .

[^2]| Made By Dud | Dale: $7 / 12 / 18$ | Jab Na: P4oz 180060 |
| :--- | :--- | :--- |
| Checked By: Sit | Dale: $-7 / 24 / 16$ Sheet No. | |

LAKE PARK ARCH 8RIHEE - LDAD RATI蚆
DECK

Deck consists of 6" thick reinoreded concrete supported on th sieves, reinforced both directions with bottom reinforcement only.
\therefore Assume simple supports at edges, but check if two-way bending is applicable.
Dead Load : 6" thick cohere self weight Live Led " 30 pf

CROSS SETON

Som length is the distance contr te center supports but shat not exceed cleo r pen plus stab thekn-ss [ABHTD 3.24. $]$

$$
\begin{aligned}
& L_{\text {trans }}=12^{\prime \prime} 0^{\prime \prime}+6^{\prime \prime}=12^{\prime}-6^{\prime \prime} \\
& L_{\text {long }}=24^{\prime}-0^{\prime 4}-g_{\text {wat }}^{\prime \prime}+6^{\prime \prime}=23^{\prime}=10^{\prime \prime}
\end{aligned}
$$

Based on unit strip, colewlate moments for transverse panning de ct.

Also Check begin finite clement model for two-wiyy bending to establish more accurate women ts. Use shell clements omar a $2 z^{\prime \prime}-10^{\prime \prime}$ by 12'6" area, G" thick, end apply pressure e loading. Pinned supporting along penmeter for simply supported two-way slab.

LAKE PARK ABCH PWIBGE - LOAB RATNG
Based on STAAD output for two-way slate model, transwerse bemeng momant resolts as forlows:

$$
M D L=1.142 \mathrm{k} \cdot \mathrm{ft} / \mathrm{et}
$$

$$
m_{L L}=1.218 \mathrm{k} \cdot \mathrm{ft} / \mathrm{st}
$$

From origiol des:an plams:
C Updade: Do Not cons.der 2 -way bending
due to very low longitudinal moment copacity
Transwerse reinbrecment $=1 / 2^{\prime \prime} \times 1^{1 / 2}$ Kahn bars e $18^{\prime \prime}\left(A_{s}=0.38^{\circ}{ }^{\circ} /{ }^{t}\right.$ bar $)$
Longituduat reinforcement $=1 / 4 " 4$ rods at $18^{\prime \prime}\left(A_{5}=0.05 \mathrm{~m}^{2} / \mathrm{loar}\right)$
Thenswerse momat Capacity (Per plans)
Area of steal $A_{5}=\left(0.38 \mathrm{~m}^{2}\right)\left(12^{\circ}\right) / 13^{\prime \prime}=0.253 \mathrm{~m}^{2} / \mathrm{ft}$
Assume $1^{\prime \prime}$ cheor cover $\Rightarrow d=6^{+11}-\|^{\prime \prime}$ CLR $-\frac{0.707^{\prime \prime}}{2}=4.5^{\prime \prime}$
For eanerete strength, $f_{e}^{\prime} \leq 4 \mathrm{ks}, \beta_{1}=0.85$

$$
\begin{aligned}
& a=\frac{A_{s} f_{y}}{0.85 f_{c} b}=\frac{(0.253)(16)}{0.85(.640)(12)}=0.620^{\prime \prime} \\
& M_{a .11}=A_{s} f_{y}(d-9 / 2)=(0.253)(16)\left(4.65^{\prime \prime}-\frac{0.620^{\prime \prime}}{2}\right)=17.56 \mathrm{k}-\mathrm{im}=1.46 \mathrm{k}-\mathrm{ft}
\end{aligned}
$$

Capacitu/Demmed Ratio: $C / 0=\frac{m_{\text {all }}}{m_{a}+m_{u}}=\frac{1.46}{1.46+1.56}=0.485$ based on
origival design plas
Transuerse Momunt Copacity (basead on Fived Invesfigation)
Based on photos of exposed reirforcement or \&th deck underside, thensverse reinforcement is cheorly not spaced at 18." From scating multple photos, ieinforcement peems to vary from $6^{\prime \prime}$ to $7 \frac{1}{2}$. To be conservative, use reinforcament spacing of 7 ".

Bars appec to be $\sim 11 / 2^{\prime \prime}$ wide $\Rightarrow \therefore$ Assunve $1 / 2^{" 1} \times 1 / 2^{\prime \prime}$ Kahn bors from plans
Area of steet: $A_{5}=\left(0.38^{\mathrm{m}^{2} / 4}\right)^{\left(12^{\prime \prime}\right)} / 7^{\prime \prime}=0.65 \mathrm{in}^{2} / \mathrm{H}$

LAKE FARE ARCH BRIDGE - LON RATING

$$
\begin{aligned}
& a=\frac{A_{s} f_{y}}{0.85 f_{c} b}=\frac{(0.65)(16)}{0.85(0.640)(12)}=1.54^{\prime \prime} \\
& M_{\text {all }}=A_{s} f_{y}(d-a / 2)=(0.65)(16)\left(4.65^{\prime \prime}-\frac{1.54^{\prime \prime}}{2}\right)=40.07 \mathrm{k} \cdot \mathrm{~m}=3.39 \mathrm{c}^{\mathrm{k}} \mathrm{ft}
\end{aligned}
$$

Because treasweree steel provided is much greater than longitudinal reinforcing steel, assume deck is simply supported transversely as implied by origmel design plans. I Use loads from trensuerge unit

$$
\begin{aligned}
& \text { strip: } \\
& M_{S L}=1.46^{k \cdot f} \quad M_{u}=1.56^{\mathrm{k}-\mathrm{ft}}
\end{aligned}
$$

AS-CONFIGURED
For bridge in AS-CONFIGURED condition, add the dead load due to I" concrete weaning surface. Additional railing load does not apply since it is not transferred through deck:

$$
\begin{aligned}
& g_{D L}=(0.15 \mathrm{ket})\left(\frac{6^{\prime \prime}+1^{11}}{12}\right)\left(12^{12} / 2\right)^{2}=0.0875 \mathrm{~km} \\
& M_{D L}=8 L^{2}=(0.087)\left(\frac{\left(2.5^{2}\right.}{8}\right)=1.71 \mathrm{k.A}
\end{aligned}
$$

$$
\begin{aligned}
& c / D=\frac{M_{\text {all }}}{m_{\text {tor }}}=\frac{3.339}{3.27}=1.02 \text { [As-Contiopred] }
\end{aligned}
$$

AS-INSPECTES
Use higher $f_{e}^{\prime}=2000$ psi based on concrete testing with As-Configured loads. No significant section lass is noted on rebec in governing areas, therefor use as-built properties for steel.

$$
\begin{aligned}
& a=\frac{A_{s} f_{y}}{0.85 f_{5}}=\frac{(0.65)(16\}}{0.85(0.80)(12)}=1.275^{\prime \prime} \text {, whale } f_{5}=0.4 f_{e} \\
& m_{\text {all }}=A_{s} f_{y}(d \cdot 4 / 2)=(0.65)(16)\left(4.65 \cdot \frac{1.275}{2}\right)=41.736 \cdot \mathrm{~m}=3.478 \mathrm{k} \cdot \mathrm{ft} \frac{\mathrm{e}}{\mathrm{E}} \mathrm{C} \\
& \left.\therefore C / D=\frac{M_{\text {all }}}{M_{\text {tot }}}=\frac{3.478}{3.27}=1.06 \quad \text { [As-Inpectred }\right]
\end{aligned}
$$

LAKE PARK ARCH BRDGE - LOAD RATING
Shear capacity
Also check shear capacity on concrete deck to determine if it may govern rating. Examme As-bult condition first:

$$
\begin{aligned}
& m_{\text {Ax }} \text { sHEAR }=8^{2} / 2=(0.075 \mathrm{k} \mathrm{kt}+0.08 \mathrm{k} / \mathrm{ft}) \times \frac{12 \mathrm{~S}^{1}}{2}=0.969 \mathrm{kips} \\
& \text { MAX SHEAR STRESS }=v=\frac{V}{b_{w} d}=\frac{(0.969 \mathrm{kj}(11000)}{\left(12 "^{\prime \prime}\right)\left(4.6 \mathrm{~S}^{\circ}\right)}=17.37 \mathrm{psi}
\end{aligned}
$$

First check allowable shear stress based on concrete only:

$$
v_{c}=0.95 \sqrt{f_{e}^{\prime}}=0.95 \sqrt{1600 p^{3 i}}=38.0 p s i \Rightarrow 17.37 p s i
$$

\therefore Capacity/Demend ratty is greater then z without considering contribution from inclined stirrups
\Rightarrow SHEAR WILL NOT GONERS DECK ANALYSIS

$1 \frac{1}{2}$ " $\times \frac{1}{2}$ ". Area $.38^{\text {a }}$ Weight 1.4^{*} per ft.

"Hose bars cat have any standard size cuts as shown in Figure it and will be sent in lengolles as ordered. It making calcalacions for strength of reinforced beans, assume the area of the entire cross section as here given.

3"x 1" Area 1.42"*Werght 4.8* per ft

1.1.. ㄴ. $3 \frac{3}{4}^{\circ} \times 1 \frac{1}{4}^{\prime \prime}$. Area 2.0 "Weight 6.9* per ft.

FOR REFERENCE ONLY

Job Title:
Client:
Engineer:
STAAD SPACE
START JOB INFORMATION
ENGINEER DATE 12-Jul-18
END JOB INFORMATION
INPUT WIDTH 79
UNIT FEET KIP
JOINT COORDINATES
$1000 ; 223.833300 ; 323.83330$ 12.5; $40012.5 ; 50.99305400$ 0; 60.99305401 .04167 ; 7001.04167 ; 81.9861100 0; 91.9861101 .04167 ; $102.9791600 ; 112.979160$ 1.04167; 123.9722200 0; 133.9722201 .04167 ; 144.9652700 0; 154.9652701 .04167 ; 165.9583300 0; 175.9583301 .04167 ; $186.9513800 ; 196.9513801 .04167$; $207.9444300 ; 217.9444301 .04167$; $228.9374900 ; 238.9374901 .04167 ; 249.9305400 ; 259.9305401 .04167$; $2610.923600 ; 2710.923601 .04167 ; 2811.916700$ 0; 2911.916701 .04167 ; $3012.909700 ; 3112.909701 .04167 ; 3213.902800 ; 3313.902801 .04167$; $3414.895800 ; 3514.895801 .04167$; $3615.888900 ; 3715.888901 .04167$; 3816.881900 ; 3916.881901 .04167 ; 4017.87500 ; 4117.87501 .04167 ; $4218.86800 ; 4318.86801 .04167 ; 4419.861100 ; 4519.861101 .04167$; $4620.854100 ; 4720.854101 .04167 ; 4821.847200 ; 4921.84720$ 1.04167; $5022.840200 ; 5122.840201 .04167 ; 5223.833301 .04167$;
$530.99305402 .08333 ; 54002.08333 ; 551.9861102 .08333 ;$
56 2.97916 0 2.08333; $573.9722202 .08333 ; 584.9652702 .08333 ;$
$595.9583302 .08333 ; 606.9513802 .08333 ; 617.9444302 .08333 ;$
62 8.93749 0 2.08333; 639.930540 2.08333; 6410.92360 2.08333;
65 11.9167 0 2.08333; $6612.909702 .08333 ; 6713.902802 .08333$;
68 14.8958 0 2.08333; 6915.88890 2.08333; 7016.881902 .08333 ;
$7117.87502 .08333 ; 7218.86802 .08333 ; 7319.861102 .08333 ;$
$7420.854102 .08333 ; 7521.847202 .08333 ; 7622.840202 .08333 ;$
77 23.8333 0 2.08333; 78 0.993054 0 3.125; 79 0 0 3.125; 801.986110 3.125;
$812.9791603 .125 ; 823.9722203 .125 ; 834.9652703 .125 ; 845.958330$ 3.125;
$856.9513803 .125 ; 867.9444303 .125 ; 878.9374903 .125 ; 889.930540$ 3.125;
8910.92360 3.125; 9011.91670 3.125; 9112.90970 3.125; 9213.902803 .125 ;
9314.89580 3.125; 9415.88890 3.125; $9516.881903 .125 ; 9617.87503 .125$;
9718.8680 3.125; $9819.861103 .125 ; 9920.854103 .125 ; 10021.847203 .125$;
10122.84020 3.125; 10223.83330 3.125; 1030.99305404 .16667 ;
104004.16667 ; 1051.9861104 .16667 ; 1062.9791604 .16667 ;

107 3.97222 0 4.16667; 1084.9652704 .16667 ; 1095.9583304 .16667 ;
1106.9513804 .16667 ; 1117.9444304 .16667 ; 1128.9374904 .16667 ;

113 9.93054 0 4.16667; 11410.923604 .16667 ; 11511.916704 .16667 ;
$11612.909704 .16667 ; 11713.902804 .16667$; 11814.895804 .16667 ;
119 15.8889 0 4.16667; 12016.881904 .16667 ; 12117.87504 .16667 ;
122 18.868 0 4.16667; 12319.861104 .16667 ; 12420.854104 .16667 ;
125 21.8472 0 4.16667; 12622.840204 .16667 ; 12723.833304 .16667 ;
$1280.99305405 .20833 ; 129005.20833 ; 1301.9861105 .20833$;
$1312.9791605 .20833 ; 1323.9722205 .20833 ; 1334.9652705 .20833$;
$1345.9583305 .20833 ; 1356.9513805 .20833 ; 1367.944430$ 5.20833;
1378.937490 5.20833; $1389.9305405 .20833 ; 13910.92360$ 5.20833;

140 11.9167 0 5.20833; 14112.909705 .20833 ; 14213.90280 5.20833;
143 14.8958 0 5.20833; 14415.888905 .20833 ; 14516.8819005 .20833 ;
146 17.875 0 5.20833; 14718.8680 5.20833; 14819.861105 .20833 ;

cl-filesrv\CL-FileSrv\Projects\Projects_2018\CL402\402180060\Bridge\Analysis\STAAD\Deck.std [7/12/2018 4:29 PM]Page 1 of

FOR REFERENCE ONLY

Job Title:
Client:
Engineer:
149 20.8541 0 5.20833; 15021.84720 5.20833; 15122.840205 .20833 ;
152 23.8333 0 5.20833; $1530.99305506 .25 ; 154006.25 ; 1551.9861106 .25$;
$1562.9791606 .25 ; 1573.9722206 .25$; $1584.9652706 .25 ; 1595.9583306 .25$;
$1606.9513806 .25 ; 1617.9444306 .25 ; 1628.9374906 .25 ; 1639.9305406 .25$;
$16410.923606 .25 ; 16511.916706 .25$; $16612.909706 .25 ; 16713.902806 .25$;
16814.895806 .25 ; 16915.888906 .25 ; 17016.881906 .25 ; 17117.87506 .25 ;
17218.86806 .25 ; 17319.861106 .25 ; 17420.854106 .25 ; 17521.847206 .25 ;
$17622.840206 .25 ; 17723.833306 .25 ; 1780.99305507 .29167$;
179007.29167 ; 1801.986110 7.29167; 1812.9791607 .29167 ;

182 3.97222 0 7.29167; 1834.9652707 .29167 ; 1845.958330 7.29167;
1856.9513807 .29167 ; 1867.9444307 .29167 ; 1878.9374907 .29167 ;

188 9.93054 0 7.29167; 18910.923607 .29167 ; 19011.91670 7.29167;
191 12.9097 0 7.29167; 19213.902807 .29167 ; 19314.895807 .29167 ;
194 15.8889 0 7.29167; 19516.881907 .29167 ; 19617.8750 7.29167;
197 18.868 0 7.29167; 19819.861107 .29167 ; 19920.854107 .29167 ;
200 21.8472 0 7.29167; 20122.84020 7.29167; 20223.83330 7.29167;
$2030.99305508 .33333 ; 204008.33333 ; 2051.9861108 .33333 ;$
206 2.97916 0 8.33333; $2073.9722208 .33333 ; 2084.9652708 .33333$;
$2095.9583308 .33333 ; 2106.9513808 .33333 ; 2117.9444308 .33333$;
212 8.93749 0 8.33333; 213 9.93054 0 8.33333; 21410.923608 .33333 ;
215 11.9167 0 8.33333; $21612.909708 .33333 ; 21713.902808 .33333$;
218 14.8958 0 8.33333; $21915.888908 .33333 ; 22016.881908 .33333$;
221 17.875 0 8.33333; $22218.86808 .33333 ; 22319.861108 .33333 ;$
224 20.8541 0 8.33333; $22521.847208 .33333 ; 22622.840208 .33333 ;$
227 23.8333 0 8.33333; 2280.9930550 9.375; 229009.375 ;
$2301.9861109 .375 ; 2312.9791609 .375 ; 2323.9722209 .375 ;$
233 4.96527 0 9.375; 2345.958330 9.375; 2356.951380 9.375;
$2367.9444309 .375 ; 2378.9374909 .375 ; 2389.9305409 .375 ;$
239 10.9236 0 9.375; 24011.91670 9.375; 24112.90970 9.375;
242 13.9028 0 9.375; 24314.89580 9.375; 24415.88890 9.375;
$24516.881909 .375 ; 24617.87509 .375 ; 24718.86809 .375$;
248 19.8611 0 9.375; 24920.85410 9.375; 25021.84720 9.375;
25122.84020 9.375; 25223.83330 9.375; 2530.993055010 .4167 ;

25400 10.4167; 2551.986110 10.4167; 2562.979160 10.4167;
257 3.97222 0 10.4167; 2584.96527010 .4167 ; 2595.95833010 .4167 ;
2606.951380 10.4167; 2617.944430 10.4167; 2628.937490 10.4167;

263 9.93054 0 10.4167; 26410.92360 10.4167; 26511.9167010 .4167 ;
266 12.9097 0 10.4167; 26713.90280 10.4167; 26814.89580 10.4167;
269 15.8889 0 10.4167; 27016.88190 10.4167; 27117.8750 10.4167;
272 18.868 0 10.4167; 27319.86110 10.4167; 27420.85410 10.4167;
275 21.8472 0 10.4167; 27622.84020 10.4167; 27723.83330 10.4167; 2780.9930550 11.4583; 27900 11.4583; 2801.98611011 .4583 ;

281 2.97916 0 11.4583; 2823.972220 11.4583; 2834.965270 11.4583;
2845.958330 11.4583; 2856.951380 11.4583; 2867.94443011 .4583 ;

287 8.93749 0 11.4583; 2889.930540 11.4583; 28910.92360 11.4583;
290 11.9167 0 11.4583; 29112.90970 11.4583; 29213.90280 11.4583;
293 14.8958 0 11.4583; 29415.88890 11.4583; 29516.8819011 .4583 ;
29617.8750 11.4583; 29718.8680 11.4583; 29819.8611011 .4583 ;

299 20.8541 0 11.4583; 30021.84720 11.4583; 30122.84020 11.4583;
302 23.8333 0 11.4583; 3030.9930550 12.5; 3041.986110 12.5;
$\overline{\text { \cl-filesrv\CL-FileSrv\Projects\Projects_2018\CL402\402180060\Bridge\Analysis\STAAD\Deck.std [7/12/2018 4:29 PM]Page } 2 \text { of }}$

FOR REFERENCE ONLY

Job Title:
Client:
Engineer:
$3052.97916012 .5 ; 3063.97222012 .5 ; 3074.96527012 .5 ; 3085.95833012 .5$; $3096.95138012 .5 ; 3107.94443012 .5 ; 3118.93749012 .5 ; 3129.93054012 .5$; $31310.9236012 .5 ; 31411.9167012 .5 ; 31512.9097012 .5 ; 31613.9028012 .5$; $31714.8958012 .5 ; 31815.8889012 .5 ; 31916.8819012 .5 ; 32017.875012 .5$; $32118.868012 .5 ; 32219.8611012 .5 ; 32320.8541012 .5 ; 32421.8472012 .5$; 325 22.8402 0 12.5; ELEMENT INCIDENCES SHELL
$21567 ; 35896 ; 4810119 ; 510121311 ; 612141513 ; 714161715$; $816181917 ; 918202119 ; 1020222321 ; 1122242523 ; 1224262725 ;$ $1326282927 ; 1428303129 ; 1530323331 ; 1632343533 ; 17343637$ 35; $1836383937 ; 1938404139 ; 2040424341 ; 2142444543 ; 2244464745$; $2346484947 ; 2448505149 ; 255025251 ; 26765354 ; 276955$ 53;
$289115655 ; 2911135756 ; 3013155857 ; 3115175958 ; 3217196059$;
$3319216160 ; 3421236261 ; 3523256362 ; 3625276463 ; 3727296564 ;$ $3829316665 ; 3931336766 ; 4033356867 ; 4135376968 ; 4237397069$; $4339417170 ; 4441437271 ; 4543457372 ; 4645477473 ; 4747497574$; $4849517675 ; 4951527776 ; 5054537879 ; 5153558078 ; 5255568180$; 53565782 81; 54575883 82; $5558598483 ; 5659608584 ; 57606186$ 85; $5861628786 ; 59626388$ 87; $6063648988 ; 6164659089 ; 6265669190$; $6366679291 ; 6467689392 ; 6568699493 ; 6669709594 ; 6770719695$; $6871729796 ; 6972739897 ; 7073749998 ; 71747510099 ;$
727576101 100; $737677102101 ; 747978103104 ; 757880105103 ;$
768081106 105; 778182107 106; $788283108107 ; 798384109$ 108;
$808485110109 ; 818586111110 ; 828687112111 ; 838788113$ 112;
$848889114113 ; 858990115114 ; 869091116115 ; 879192117$ 116;
$889293118117 ; 899394119118 ; 909495120119 ; 919596121120 ;$
$929697122121 ; 939798123122 ; 949899124123 ; 9599100125124$;
$96100101126125 ; 97101102127126 ; 98104103128129 ; 99103105130128$;
100105106131 130; 101106107132 131; 102107108133 132;
103108109134 133; 104109110135 134; 105110111136 135;
106111112137 136; 107112113138 137; 108113114139 138;
109114115140 139; 110115116141 140; 111116117142 141;
112117118143 142; $113118119144143 ; 114119120145$ 144;
115120121146 145; 116121122147 146; 117 122123148 147;
118123124149 148; $119124125150149 ; 120125126151$ 150;
121126127152 151; 122129128153 154; 123128130155 153;
124130131156 155; 125131132157 156; 126132133158 157;
127133134159 158; $128134135160159 ; 129135136161$ 160;
130136137162 161; 131137138163 162; 132138139164 163;
133139140165 164; $134140141166165 ; 135141142167$ 166;
136142143168 167; $137143144169168 ; 138144145170$ 169;
139145146171 170; 140146147172 171; 141147148173 172;
142148149174 173; 143149150175 174; 144150151176 175;
145151152177 176; $146154153178179 ; 147153155180$ 178;
148155156181 180; 149156157182 181; 150157158183 182;
151158159184 183; $152159160185184 ; 153160161186$ 185;
154161162187 186; $155162163188187 ; 156163164189$ 188;
157164165190 189; 158165166191 190; 159166167192 191;
160167168193 192; 161168169194 193; 162169170195 194;
163170171196 195; 164171172197 196; 165172173198 197;

cl-filesrv\CL-FileSrv\Projects\Projects_2018\CL402\402180060\Bridge\Analysis\STAAD\Deck.std [7/12/2018 4:29 PM]Page 3 of

Job Title:
Client:
Engineer:
166173174199 198; 167174175200 199; 168175176201 200; 169176177202 201; 170179178203 204; 171178180205 203; 172180181206 205; 173181182207 206; 174182183208 207; 175183184209 208; $176184185210209 ; 177185186211$ 210;

```
178 186 187 212 211; 179 187 188 213 212; 180 188 189 214 213;
```

181189190215 214; 182190191216 215; 183191192217 216;
184192193218 217; 185193194219 218; 186194195220 219;
187195196221 220; 188196197222 221; 189197198223 222;
190198199224 223; 191199200225 224; 192200201226 225;
193201202227 226; 194204203228 229; 195203205230 228;
196205206231 230; 197206207232 231; 198207208233 232;
199208209234 233; 200 209 210 235 234; 201 210211236 235;
202211212237 236; $203212213238237 ; 204213214239$ 238;
205214215240 239; 206215216241 240; 207216217242 241;
208217218243 242; 209218219244 243; 210 219220245 244;
211220221246 245; 212221222247 246; 213222223248 247;
214223224249 248; 215224225250 249; 216 225226251 250;
217226227252 251; 218229228253 254; 219228230255 253;
220230231256 255; 221231232257 256; 222232233258 257;
223233234259 258; 224234235260 259; 225235236261 260;
226236237262 261; 227237238263 262; 228238239264 263;
229239240265 264; 230240241266 265; 231241242267 266;
232242243268 267; 233243244269 268; 234244245270 269;
235245246271 270; 236246247272 271; 237 247248273 272;
238248249274 273; 239249250275 274; 240 250251276 275;
241251252277 276; $242254253278279 ; 243253255280$ 278;
244255256281 280; 245256257282 281; 246257258283 282;
247258259284 283; 248259260285 284; 249260261286 285;
250261262287 286; 251262263288 287; 252263264289 288;
253264265290 289; 254265266291 290; 255266267292 291;
256267268293 292; 257268269294 293; 258269270295 294;
259270271296 295; 260271272297 296; 261272273298 297;
262273274299 298; 263274275300 299; 264275276301 300;
265276277302 301; 266279278303 4; 267 278280304 303;
268280281305 304; 269281282306 305; 270 282283307 306;
271283284308 307; 272284285309 308; 273285286310 309;
$274286287311310 ; 275287288312$ 311; 276288289313 312;
277289290314 313; 278290291315 314; 279291292316 315;
280292293317 316; 281293294 318 317; 282294295319 318;
283295296320 319; 284296297321 320; 285297298322 321;
286298299323 322; 287299300324 323; 288300301325 324;
2893013023 325;
ELEMENT PROPERTY
2 TO 289 THICKNESS . 5
DEFINE MATERIAL START
ISOTROPIC CONCRETE
E 453600
POISSON 0.17
DENSITY 0.150336
ALPHA 5e-006

cl-filesrv\CL-FileSrv\Projects\Projects_2018\CL402\402180060\Bridge\Analysis\STAAD\Deck.std [7/12/2018 4:29 PM]Page 4 of

Job Title:
Client:
Engineer:
DAMP 0.05
TYPE CONCRETE
STRENGTH FCU 576
END DEFINE MATERIAL
CONSTANTS
MATERIAL CONCRETE ALL
SUPPORTS
1 TO 4 PINNED
58 TO 50 BY 2 PINNED
303 TO 325 PINNED
754 TO 279 BY 25 PINNED
52 TO 302 BY 25 PINNED
LOAD 1 LOADTYPE Dead TITLE DEAD LOADS
ELEMENT LOAD
2 TO 289 PRESSURE GY -0.075
LOAD 2 LOADTYPE Live TITLE LIVE LOADS
ELEMENT LOAD
2 TO 289 PRESSURE GY -0.080

PERFORM ANALYSIS PRINT LOAD DATA
FINISH

Why
Waw Ceneral CatalozueD

Kahn Systemof Reinforced Concrete

Perspective of general adaptation.

Trussed Concrete Steel Co., Union Trust Building Detroit,
 Michigan.

Representatives:

NEW YORK, N. Y.
TRUSSED CONCRETE STEEL CO., 160 FIFTH AVE.

BALTIMORE, MD.
TRUSSED CONCRETE STEEL CO.,
LAYTON F. SMITH,
612 NORTH CALVERT ST.

BUFFALO, N. Y.
EASTERN CONCRETE STEEL CO., 400 D. S. MORGAN BLDG.

CLEVELAND, OHIO. JULIUS TUTEUR, 529 WILLIAMSON BLDG.

TORONTO, ONT.
ALFRED J. STEVENS, 49 CANADA PERMANENT BLDG.

CHICAGO, ILL.
KNAPP BROS.,
123 FRANKLIN ST.

MILWAUKEE, WIS.
NEWTON ENGINEERING CO., 42 HATHAWAY BLDG.

LOUISVILLE, KY.
NATIONAL CONCRETE CONST. CO.,
140 W. MAIN ST.

ST. LOUIS, MO.
TRUSSED CONCRETE STEEL CO.,
J. P. ANNAN, CHEMICAL BLDG.

PITTSBURG, PA.
TRUSSED CONCRETE STEEL CO., FARMERS' BANK BLDG.

```
SUPPLEE ENGINEERING CO.,
                    ERIE, PA.
```


PATENTED

The Kahn Trussed Bar.

$=$
Reinforced Concrete Bridge designed in accordance with "Kahn System" of Reinforced Concreie.

Kahn System of Reinforced Concrete

So much actual work is being done at the present time with reinforced concrete, and in general, the subject is receiving such intense interest by those taking part in buildings, bridges, or other constructions, that the new method of steel reinforcement herein described, it is believed, will be of interest.

The advantages of reinforced concrete above steel, masonry, or wood, are so well known, that it is hardly necessary to enter into comparison here. Reinforced concrete is absolutely free of any of the serious objections which exist in the use of these other materials. It is fire proof, and rust proof, but what is most advantageous about this type of construction, is the fact that its strength continually increases with age.

Reinforced concrete lends itself admirably to the construction of walls, columns, floors, roofs, and all parts of buildings; to bridges, arches, culverts, abutments, retaining walls, tunnels, foundations, railway ties, and in general, it replaces, to advantage, all masonry or steel construction.

The Kahn trussed bar consists of a half truss, struck up directly from a sing'. rol'ed section, and provides the tensional members only. Concrete within itself is an excellent material to take up compressive strains, but is comparatively weak for resisting tensile strains. The Kahn bar, when imbedded in a mass of concrete, therefore, supplies strength to the latter where this is

supported ot ends.
most necessary, and the combination of the two materials, forms a complete truss. The main virtue of this trussed bar lies in the fact that concrete is reinforced wherever it is deemed necessary, that the steel extends upwardly into the mass, as well as lying merely along its bottom edge. This, then. in short, is the essence of this new type of construction, and a further reading of this pamphlet will show the large number of its applications.

It is fairly well recognized among engineers, that vertical reinforcement for concrete beams is just as essential as the horizontal reinforcement, and in many cases to acconiplish this purpose, the horizontal rods ate surrotinded by U shaped stirrups of band or twisted iron. It was noticed at first by European engineers that a concrete beam, when tested to destruction under uniform loading, invariably failed by shear at the ends, the lines of rupture corresponding closely to the lines of principal compressive stress for such a beam, as is shown in Figure 1. In this country engineers were apparently very slow to
realize the importance of such vertical reinforcement. In fact, upon its strong recommendation by one of the U. S. Engineer Corps in a leading Engineering Journal, a number of engineers argued the matter strongly and pointed out tests which they had actually made, where apparently the break did not occur at the ends of the beam. Without one exception, however, these tests, when investigated, proved to be beams which had been loaded either tinfairly, so as not to develop strains actually occurring in building practice, or they referred to beams so abnormally proportioned that they could not possibly be used.

The Trussed Concrete Steel Company has made a number of tests on beams reinforced with plain and deformed rods on the bottom, and without one exception, all such beams, when tested to destruction under uniform loading, failed suddenly by vertical cracking or shear through the concrete, or longitudinal shear along the end of the rod.

This matter of vertical reinforcement is certainly of more importance than some American Engineers have been willing to grant. It seems most natural

Fig. 2.
that rupture should occur in this manner. In fact, one can hardly conceive of its occurring in any other way. It must, of course, be remiembered that a beam, when tested for both shear and bending moment, should be subjected to a uniformly distributed load, not to a concentrated center load; for, a beam loaded according to this latter method would only develop one-half the shear which exists in a uniformly loaded beam for a given bending moment.

Take, for example, a certain beam, as shown in Figure 1, and consider the cross section "AA."

The tension strain on each fibre below the neutral axis, varies in proportion to its distance therefrom. The vertical shearing is, however, practically constant. The resultant strain on any particle should therefore be a combination of these two components, producing a line of principal tensile stress, which is one of variable curvature from the bottom of the beam to the top.

Reinforced Concrete

If, then, lines of principal tensile stress exist throughout a beam, it is most natural that the concrete, being weak in tension, should open at right angles to these lines, and this is what has occurred in all the tests which the writer has observed in well proportioned concrete steel beams, when tested :o destruction under uniform load, and where the metal reinforcement was horizontal only.

As has already been noted, European engineers endeavored to overcome the difficulty by placing stirrups throughout the beam, their distances apart varying, of course, in the inverse ratio of the shear. There seems no doubt whatever in the writer's mind that such stirrups accomplish a great deal of good, as they cross the lines of rupture at an angle, and tend to hoid the material together. If, however, they are placed in a beam, they should be placed in a

Fig. 3.
direction inclined to the horizontal, so as to lie more closely along the line of principal tensile stress, for if they lie in exactly this line, they also cut the actual line of rupture at right angles, and are therefore of maximum efficiency in holding together the concrete where its natural tendency is to open up. Furthermore, if such stirrups are to carry stress, they should carry it into some member capable of receiving it, and the bottom chord member or the horizontal reinforcement is there for that purpose. In the first place, then, it seems to the writer that stirrups should be inclined to the vertical and preferably bent to a curvature to approximate the line of principal iensile stress. and secondly, these stirrups should be rigidly connected to the main horizontal reinforcing bar.

There is still another matter in connection with the steel reinforcement for concrete beams, which is also of great importance, in so far that it affects economy in the use of steel. In a uniformly loaded beam, the masimuin bend-
ing moment occurs at the center, whereas the maximum shear occurs at the ends, and if the same quantity of steel reinforcement is therefore placed along the bottom of the beam and extends the full length of it, it does seem to the writer that steel has been wasted so far as bending moment alone is concerned, and certainly the beam has been neglected so far as shear is concerned. A steel I beam in this manner is not an economical construction for uniform loading; its top and bottom flanges are only required at the center and at this place only a very thin web, whereas at the end the stress is almost altogether shear, and web alone is required with very little of top and bottom flanges.

In the system of concrete reinforcement, which it is the parpose of this pamphlet to describe, these two matters have been carefully considered. The fundamental principles of this type of reinforcement are:

1st. Concrete should be reinforced in a vertical plane, as well as in a horizontal one.

2nd. The reinforcement should be inclined to the vertic a^{1}, preferably with varying upward curvature, approximating the line of principal tensile stress.

3rd. The metal should be distributed in proportion to the strains existing at any place.

4th. The shear members should be rigidly connected to the horizontal reinforcement steel.

It has been endeavored to accomplish all of these results by taking a bar of cross section, as shown in Figure 2, and shearing upwards into an inclined position the web on both sides of the main body, thereby forming substantially the tension members of the ordinary Pratt Truss. When such a structural member is embedded within a body of concrete, the latter unites firmly to the steel, and the combination of the two forms a trussed beam wherein the tensional members are made up of steel, and the missing compression members supplanted by the concrete. Concrete is excellent in compression: steel, in tension; and, thanks to the property of strong adhesion between the two, in their combination is made a most ideal beam.

Neglecting for a moment the matter of vertical reinforcement, it is very evident that a bar sheared up as above described, can not possibly slip through the concrete. The writer has actually taken blocks of concrete, moulded to form the voussoirs of a flat arch, and then set them between the prongs. Such a beam, though set up without a particle of mortar between the joints, will carry a very heavy weight, and were it not for the large deflecsion which is caused by the poorly fitting surfaces between the prongs and blocks, such a beam would carry weights to the same extent and on the same principle as when steel and concrete are actually united together.

And this presents another way of looking at the reasons why this method of reinforcement is so efficient. As soon as a load is applied on top of the
beam, the concrete tends to arch itself, and a series of internal arches immediately set themselves up within the material, each arch finding its abutment in a set of prongs for which the bottom chord acts as a tie. The prongs receive the weight and carry it upwards, distributing it on the other arches of larger span, the horizontal reinforcement serving as a common tensicnal member. It is plainly evident that with this construction the horizontal member might actually be placed entirely outside of the concrete, and the adhesion of the concrete to it entirely neglected, the strains coming into it being so largely the harizontal components of the inclined members. Of course, for fire proofing purposes. and to prevent rusting, it is more advisable to imbed the steel within the concrete, and when this is done, advantage may be taken of both the adhesion of the concrete to the main bar and to the sheared up members. In fact, with a given amount of concrete, a maximum amount of steel may be used, since the strains which it takes up are due to the direct adhesion of the concrete to it, plus the horizontal component of the inclined members. When such a beam fails, assuming that good material has been used for its construction, one of two things must happen,-either the steel pull in two, or the concrete crush on top. The top portion of a concrete beam when used in floor construction, is largely the floor itself, and it is generally impossible for this to fail in compression. It would seem, therefore, that a very large quantity of steel could be placed in the bottom of the beam to balance the compression. In fact, in all tests which the writer has made up to date, he has pulled the steel in two at the center of the beam.

Fig. 3a.
Another point of great advantage of this construction is the fact that a beam need not necessarily be very wide to carry a given load; depth alone counts to advantage. The steel reinforcement, depending entirely upon the stresses coming into it from the sheared up members, may be one large bar. This is practically impossible with constructions wherein the stresses coming into the steel are due to adhesion only of the concrete to it. Where such adhesion is depended upon, a large body of concrete must surround the steel to be able to
transmit all of the strain which the bar is capable of taking. Whaterer strain exists in the steel must be transmitted into the upper portion of the concrete immediately surrounding it, and any one can readily perceive the enormity of the horizontal shear, which must therefore exist throughout the body of the concrete, and the necessity of giving this great width. With this new method of concrete reinforcement, however, the beam may be comparatively narrow; in fact, at the bottom it needs only to be sufficiently wide to encase the steel. It should taper upwards, however, widening towards the top, so that sufficient area may be given to the concrete to receive the compression. This, of course, makes a remarkable saving in the amount of this material used.

The strength of steel is, of course, a definitely determined matter. As for the concrete, it is not very expensive, and it would be advisable in all cases to give a small surplus of this material on the top of a beam, sj that it will not fail by compression. With shear thus properly cared for, there is only one way in which the beam can possibly fail, and that is by the parting of the steel. Where this result can be assured with certainty, a concrete beam need no longer be subjected to a factor of safety of "ten": the ordinarily adopted factor of "four" is sufficient, as such a beam is entirely dependent upon the steel and should be subject to close calculation in the same manner as a steel I beam or truss. When a concrete beam fails by shear, as has occurred almost without exception in tests up to date, then indeed, the engirieer stands more or less in mystery. In general it seems to the writer that whenever concrete is depended upon to carry other strains than direct compression. more or less risk is being assumed by the designing engineer, and a large factor of safety is strongly recommendéd.

Some photographs are submitted herewith of tests made on two reinforced concrete beams, of twenty-six feet span, center to center of supports, with a four-inch thick concrete slab five feet wide on top to receive the load. The concrete was made of Portland cement, sand, and crushed stone, proportioned one, two and five. Loading was done with pig iron. Deflections measured at the center. In one of the photographs, an outline is shown of the actual cross sections of the beams. The ends, it will be noted, are built up solid to give better bearing on the supporting timbers. The area of metal in the bottom of each beam was two square inches. No deflection whatever could be observed in the beams until the load had reached 48,000 pounds. When 84,000 pounds of pig iron had been loaded on the beams, making a total weight of 93,000 pounds thereon, the floor slab, weighing about 9,000 pounds, the actual deflection was five-eighths of an inch. It was evident that the elastic limit of the steel had been well exceeded by this time. With 101.100 pounds of pig iron, plus 9,300 pounds for weight of slab, making a total load of 110,400 pounds, the beam failed, breaking at the center, and pulling the steel in two at this point. Not a sign of a crack was to be seen throughout the beam at any other place than at the point of failure. This seems to the writer a very remarkable test. The absolute lack of even a hair-like crack throughout any portion of the beam, except at the place of failure, is clear evidence that shear was properly provided for.

As has already been explained, with this method of reinforcement, the adhesion of the concrete to the horizontal steel membe: is not essential; in fact, if the latter were placed entirely outside of the concrete, the beam would be rery nearly as efficient, as the strain which comes into this lower chord is so largely the summation of the horizontal components of the inclined members.

This principle is utilized in the Kahn patented trussed lintel, drawings and photographs of which are presented herewith. In the old system of lintels, an I beam or built-up girder was figured on to carry the weight of the superimposed load and a $12 \times 1 / 4$ inch or other similar plate was riveted to the bottom flanges of the beam to give bearing for the wall above, but the plate was counted upon as rendering little or no service in strengthening the linitel. In the new system this bearing plate not only supports the brick-work directly, but also acts as the bottom flange of a masonry beam, in which the masonry takes up the compression or thrust of a flat arch, while the steel plate takes up the tension., Diagonals, riveted to the base plate, form abutments for a series of arches of stress, which set themselves up within the masonry, and for these the base plate serves as the bottom chord or tie. Each diagonal carries its weight upwards on the principle of the ordinary truss and spreads it on other arches of larger span, each of which has its corresponding abutment in a set of diagonals.

Another way of looking at the steel reinforcement for such a masonry beam, is to regard it as a half truss, made up of tension members only, the masonry supplying the missing compression members, and the two being firmly united to each other through the cement, which forms a perfect bond between them.

One of the photographs submitted herewith shows such a lintel, consisting of a $12^{\prime \prime} x^{1 / 4} 4^{\prime \prime}$ steel plate, to which $1^{\prime \prime} x 1 / 4^{\prime \prime}$ diagonal members were riveted. The span was twelve feet, height of lintel eleven inches, breadth thirteen inches. Steel billets weighing 110 to $1 \% 0$ pounds were loaded on the beam until a total weight of 40,720 pounds was reached, equal to 3,400 pounds per linear foot of beam. The deflection was $1 / 4 \mathrm{inch}$. Loading was stopped at this point, as the beam was beginning to be very top heavy, and it was feared might turn over and injure the workmen.

The above systems of concrete reinforcement which have been described are controlled by patents granted and now pending, which are held by the Trussed Concrete Steel Company, Union Trust Building. Detroit, Mich.

Fig. 4.
Showing method of failure for concrete, reinforced in accordance with old systems, using twisted rods. Span 18 feet.

Figures 4,5 , and 6 , show tests made at Washington by the United States Engineers, on reinforced concrete beams and slabs, wherein twisted steel rods had been placed along the bottom of the floor. The methods of failure and reasons for it will at once become apparent to the engineer or architect. No matter how much horizontal reinforcement might have been placed in these floors, their strength would not have been increased. The probability is that their strength would have been greatly decreased, as the m!1tiplicity of rods

Fig. 5.
Failure of concrete by shear, reinforcement horizontal only, using deformed rods.
would only have cut up the concrete at the bottom, wherein the enomous shearing strain existed, to which attention has already been called. The floors failed by longitudinal shear along the ends of the rods where this is maximum. All the twisting in the world would not have prevented it, nor would this twisting, to the slightest extent, have decreased the vertical shear, which, it is very apparent, was fundamental in the cause of failure. It is unscientific to neglect this matter of shear, and to imagme that concrete

Fig. 6.

Note failure of concrete when horizontal reinforcement only is used. Lines of failure correspond to lines of principal compressive stress.
within itself is capable of taking this strain. Tests for shear have developed strengths remarkably low. The writer has never been able to secure results of more than 200 to 400 lbs . per square inch. Why, therefore assume such risk in reinforced concrete? There is only one way to prevent failures such as have been shown in these photographs, and that is by strengtiening the floors both longitudinally and horizontally for shear, as well as bending moment; and this, it is believed, has been well accomplished by the Kahn system of Trussed Reinforcement.

Fig. ${ }^{7}$.
Beams reinforced with Kahn System. Span 26 feet. Load, pig iron.

Figure $\gamma, 8,9$ and 10 show tests of the same nature, made on two beams strengthened in accordance with the Kahn system of reinforcement These beams were 26 feet span. Please note the comparison of loadings between them and the floors of 18 feet span with twisted rods. When failure occurred in these beams, the rupture was absolutely central. The steel pulled in iwo. Not a sign of a crack was to be observed throughout the beam at any other point. Maximum efficiency was, therefore, given to the strength of the beam. The accomplishing of this result is of especial interest to the engineer, from the fact that he can design with certainty. If the steel pulls in two, he can calculate the strength of the concrete beam with the same accuracy as the steel I beam. Even more so : for the I beam, under test to ultimate destruction, will buckle in its top flange long before the bottom flange pulls in two.

Fig. 8.
Two beams reinforced with Kahn System. Span 26 feet.

Fig. 9.
Load 84000 lbs . pig iron on two Kahn reinforced beams. Compare these with
Fig. 6 where span is only 18 feet.

Fig. 10.
Failure of two Kahn reinforced beams
Load: Pig iron 101100 lbs.
Weight of floor slab 9300 lbs .
Total weight on beams 110400 lbs .
Beam failed in center pulling four bars of steel in two. Compare with Fig. 6.

Reinforced Concrete

Fig. 11.

Figure 11 shows the Kahn patented Trussed Bar. It is very interesting to note how readily it adapts itself to all types of construction. Its application to columns, walls, latticed girders and trusses is fully as simple as its application to beams. Where a column is to be constructed, the bars are set in the corners of the concrete, and the shear members extend across the body, forming practically a latticed column. The reasons for the efficiency of such a column will be very apparent. Under ordinary circumstances, a steel bar is steadied at points very closely together, then the entire strength of the steel can practically be developed. This result is accomplished in the steel reinforcement of a column, due to the hold of the concrete on the prongs. Furthermore, when the concrete tends to buckle, the steel comes into play on the principle of the ordinary latticed girder. In other words, the steel and concrete mutually reinforce each other.

Where moving loads are to be taken into account, it is best to place Kahn Trussed Bars in both the bottom and top of the beams, thereby producing practically a latticed girder.

Fig. 12.

Kahn System of

$2 \frac{3}{16} \times \frac{3^{\prime \prime}}{4}$. Area. $78^{\circ "}$ Weight $2.7^{\text {\# }}$ per ff.

fIG. 13.
$3 \frac{3}{4} \times 1 \frac{1}{4}$ ". Area 2.0" Weight 6.9 \#per ft.

Bars kept in stock ready for immediate delivery, in any lengths with standard cuts.
Fig. 14.

Figure 13 shows standard sections of the Kahn Trussed Bars. Practically any construction can be built by using one of the four sizes sliown and sheared up as is indicated in Figure 14. The equivalent of Steel Beams from 6 inches to 20 inches can be built up with reinforced concrete, using one or more of these bars placed in the bottom, or on the tension side.

Figure 14 shows standard cuts. It will be noticed that the largest is 18 inches. Where deeper girders are wanted, it will be well to lay some of the rods horizontally all the way along the bottom, and others slanting upwards from the bottom towards the ends of the beam, thereby distributing the shear members throughout the beam, and causing them to reach its very top.

Calculations Modern Design Loads

Mate By: DWNC	Date: $5 / 2 / 18$	JobNo: P402 180060
Cherked By SFH	Date: $2 / 2 / 52$	Sheet No.

LALE PARK ARCH BRIDGE - ADDITIONAL LOHD CONSIDERATIONE

Update struetural matysis to determine the capability of the bendee to resist current code prescribed pedestrion and maintenance vehiele loads.

Assumptions:

* Calculate capacity to demand rethos bated an Alluwdule stess Desiqn (ASD)
- Consider the following loading cases:
\rightarrow Inventory Level:90 psf pedestrian locad
\rightarrow Operating level: H5 mamtenance ufeniche (s-tom twock) + 90 psf
- Use allowable stress factors based on AASHTo manuat far pedestrion Bridge Evaluetion
\rightarrow Rempercing Stee, [AASHTD MEE beble 6B.3.2.3.1]
- Invertary: $f_{s}=18,000$ psi
- Operating fy $\because 25,000 \mathrm{ps}$
\rightarrow Compression due to Eendm (Ansto MBE Toble bes.S. $4,1,1-1$)
- Invertory : $f_{c}=6$ to psi (onamal), $f_{c}=800$ psi (oncerte testing)
- Optratrg: $f_{c}=960$ psi (onginat), $f_{e}=1200 p s i(\operatorname{mon}+\tan$ testing)
= Based Dn results of oneman 3 analysis eatermativen sheer does not gouern eny of the copacity tre demand cotos
$\rightarrow \therefore$ Iqnore shear colculations

6B.5.2.3-- Reinforcing Steel

The following are the allowable suit stresses in tension for reinforcing steel. These will ordinarily be used without reduction when the condition of the steel is untatiown.

Table 6H.5.2.3-L—Allowathle Unit Stresses for Reinforcing Steel

6B.5.2.4-Concrete

Unit stresses in concrete may be determined in accordance with the Service Load Design Method of the AASLITO Standard specifications (Article 8.15) or be based on the articles below. When the ultimate strength, $f_{i z}$: of the concrete is unknown and the concrete is in satisfactory condition, fr, may be determined from Table 6B.5.2.4-1.

Table 6R.5.2.4-1 Allowable Unit Stresses for Concrete

Year Built	$f^{\prime \prime}(\mathrm{p} 5 \mathrm{j})$
Prior to 1959	2,500
1959 and later	3,000

For prestressed concrete components, the compressive strengths shown above may be increased by 25 percent.

6B.52.4.] Bending
'] he following maximum allowable bending unit stresses in concrete in [bin. ${ }^{7}$ may be used:

Table GB.5.2.4.1-1—Compression Duse to Bending $f^{f}{ }_{c}$.

Based on values in table, use:

$$
\begin{aligned}
& \text { Inventory: } f_{c}=0.4 f_{c}^{\prime} \\
& \text { operesteg: } f_{e}=0.6 f_{e}^{\prime}
\end{aligned}
$$

\therefore For original concrete in As-Buit $n d$ As-Centioured analysis alsoriatres.
Inventory $=0.4(1600)=640$ psi
seating $=0.6(1600): 460 \mathrm{psi}$
mitigate the risk from yehicle collisions with the superstructure. Should the owner desire additional mitigation, the following steps may be taken:

- Increasing vertieal clearance in addition to that contained in $A A B H T O L R F D$
- Providing structural continuity of the superstructure, either between spans or will the substructure
- Itcreasing the mass of the superstructure
- Increasing the lateral resistance of the superstructure

2-PHILOSOPIIY

Pedestrian bridges shall be designed for specified timit states to achieve the objectives of salety; serviceability, including comfort of the pedestriati user (vibration): and constructability with due regard to issues of inspectability, econorny, and acsthetics, as specificd ith AASHTO LRFD. These Guide Specifications are hased on the LRFD philosophy. Mixing provisions from specilications other than those referenced herein, even if LRFD based, should be avoided.

3-LOADS

3.1-PEDESTRIAN LOADING (PL)

Pedestrian bridges shall be designed for a uniform pedescrian loading of 90 psf. This loading shall be patterned to produce the maximum load effects. Consideration of dynamic load allowance is not required with this loading.

C3. 1

This anticle modifies the pedestrian louding provisions of the Fourth Edition of AASHTO LRFD, through the 2009 Interim. The previous edition of these Guide Specifications used a base nominal leading of 85 ps [teducible to 65 pst bascd on intluence area for the pedestiagn load, With the I.FD load factors, this results in factored loads of $2.17(85)-184$ psl' and $2.17(65)$ - 141 psf. The Fourlh Edition oll AASIITO $\angle R F D$ specified a constant 85 psf regardless of influence area. Multiplying by the load faclor, this results in $1.75(85)=149 \mathrm{psf}$. This falls within the range of the previnus factored loading, albeit toward the tower end.

E'uropean codes appear to starl with a higher nominal load (approx 105 psf), but then allow reductions hased on loaded length. Additionally, the load factor applied is 1.5 , resulting in a maximufs factored load of (1.5) $105=158 \mathrm{psf}$. For a long loaded length, this load can be reduced to as low as 50 parf, resulting in a factored load of ($(1.5) 50=75 \mathrm{psf}$. The effect of resistance factors has not been accounled for it the above discussion of the European codes. There are,

Figure C3.I-I-Live Load of 50 pur

Figure C3.1-2-Live Load of t00 psf

Figure C3.1-3-Live Luad of [50 psi'

$3.2-\mathrm{VEIIICLE}$ LOAD (LL)

Where wehiculat access is not prevented by permanent physical methods, pedestrian bridges shall] be designed for a maintenance wehicle loud specified it Figure 1 and 'Table 1 for the Strength I Load Combination unless otherwise specified by the Owner.

C3. 2

The vehicle loading specified is equivalent to the $H-$ trucks shewn in Article 3.6 .1 .6 of $A A S H T O$ LRFD 2009 Interim and contained in prewjous versions of the AASHTO Stardard Specifications for Highway Bridges.

A single truck shall be placed to produce the maximum load effects and shall not be placed in combinations with the pedestrian load. The dynamic load allowance need not be considered for this loading.

Table 3.2-1—Desifn Vehicle

Figure 3.2-I—MLaintenance Vehicle Configurations

3.3-EQUESTRIAN LOAD (LL)

Decks intended to carry equestrian loading shall be designed for a patch load of 1.00 kip ovet a square area measuring 4.0 in, on a side.

3.4-WIND LOAD (WS)

Pedestran bridges shall be designed for wind loads as specitied in AASHTO Sighs, Arlicles 3.8 and 3.9. Unless otherwise directed by the Ommer, the Wind [mportance Factor, I_{r}, shall be taken as J.15. The lewding shall be applied ower the exposed area in front

C3.3

The cquestrian load is a live load and intemded to ensure adequate punching shear capacity of pedestrian bridge decks where horses are expected. The loading was derived from hoof pressure measurements reported in Roland et. al. (2005). The wors loading occurs during a canter where the loading on ane hoof approaches 100 percent of the total weight of the horse. The total factored load of 1.75 kips is approximately the maximun ctedible weight of a drati horse. This loadinge is expected to control anly deck design.

C3.4

The wind loading is taken from $A A S H T O$ Signs specification rather than from $A A S H T O L R F D$ due to the potentially flexible nature of pedestrian bridges, and also due to the potential for traffic sigus to be mounted on them.

LAKE PARK ARCH BRIDGE - ADDITIONAL LOAD CONSIDERATIONS
ARCH RIBS
Update loads and matenal properties used in arch rib analysis and rerun for new numbers based on the following changes:

$$
\begin{aligned}
& f_{5}=18000 \mathrm{psi}^{\text {i }} \text { (Inventory) }, f_{5}=25000 \mathrm{psi} \text { (Operating) } \\
& f_{e}=640 \text { ps: (Inv, As.Buitt), } f_{e}=960 \text { psi (Open, As.Built) } \\
& f_{e}=800 \mathrm{psi} \text { (Inv, As.Inspected), } f_{c}=1200 \mathrm{ps}: \text { (over, As-Inopected) } \\
& A_{5}=2.79 \mathrm{in}^{2} \text { Toe + Bottom (AS-Bullt) } \\
& A_{s}=2.14 \mathrm{~m}^{2} \text { ToP } \rightarrow \text { Botrm (As.Inepeted) }
\end{aligned}
$$

Loads:
Inventory: Use 90 pst pedestrimen load with position versed to maximize lond effects

$$
\therefore \text { Load in STAAS }=\left(90 p_{5} 41\left(12^{1} / 2\right)(1 / 1000)=0.54 \mathrm{k} / \mathrm{p}\right.
$$

Operating: Use HS mairitemance truck (5 tontruck) wi LLDF applied (see Longitudinal speedrel beer cotes) plus 90 pst pedestriten land

$$
\begin{aligned}
& \therefore \text { Front wheal load }=\text { LufF } \times\left(1 \mathrm{k}+1=1.154^{\prime}\right)^{\mathrm{k}}=1.154^{\mathrm{k}} \\
& \text { Rear wed load }: \text { LLD } \times(4 \mathrm{kP})=1.154 \times 4^{k}=4.616 \mathrm{k} \\
&
\end{aligned}
$$

For now, only check Lower Arch segments because they clearly governed the previous analysis.

Made $\mathrm{B} \%:$ DWT	Date:	$z / 3 / 18$	Job No. $P 402180060$
Checked By: SAil	Date:	$8 / 3 / 18$	Sheet No.

LAKE PARK ARCH BRIE - ADDITIONAL LOAD CONSIOEATIONS
ARCH RIBS
Operating Level
For operating level analysis, consider 90 pst pedestrian lond and H5 maintenance trues cong ra unison. To do this, use superposition of STAAD output results for truck (operating model) with go pst (Inventory Model) and Dead Lond

$$
\text { Ton }=\text { Dead Load }+90 \text { pst }+ \text { HS Truck }
$$

To capture the worst case load effects for multiple varying load cases, sort the date for 90 pst + 155 truck load effects by the following 4 cases:

1) Maximum axial + corresponding moment
2) Minimum axial + corresponding moment
3) Motamum moment + corresponding axial
4) Minimum moment a corresponding axial

Client:
Engineer: DWC

```
STAAD SPACE
START JOB INFORMATION
ENGINEER DATE 02-Aug-18
CHECKER DATE 03-Aug-18
JOB NAME LAKE PARK ARCH BRIDGE LOAD RATING
JOB COMMENT ARCH RIBS - DEAD LOAD + 90 PSF
ENGINEER NAME DWC
CHECKER NAME SFH
END JOB INFORMATION
INPUT WIDTH 79
UNIT FEET KIP
JOINT COORDINATES
*Node X Y Z
1 0 0 0; 2 2.75 1.789 ; 3 5.5 3.46 ; 4 8.25 5.019 ; 5 11 6.472 0;
6 14 7.942 0; 7 17 9.297 0; 8 20 10.542 0; 9 23 11.68 0; 10 26 12.716 0;
11 29 13.653 0; 12 32 14.493 0; 13 35 15.239 0; 14 38 15.893 0;
15 41 16.456 0; 16 44 16.93 0; 17 47 17.317 0; 18 50 17.616 0;
19 53 17.83 0; 20 56 17.957 0; 21 59 18 0; 22 62 17.957 0; 23 65 17.83 0;
24 68 17.616 0; 25 71 17.317 0; 26 74 16.93 0; 27 77 16.456 0;
28 80 15.893 0; 29 83 15.239 0; 30 86 14.493 0; 31 89 13.653 0;
32 92 12.716 0; 33 95 11.68 0; 34 98 10.542 0; 35 101 9.297 0;
36 104 7.942 0; 37 107 6.472 0; 38 109.75 5.019 0; 39 112.5 3.46 0;
40 115.25 1.789 0; 41 118 0 0;
\begin{tabular}{llllllllll}
50 & 0 & 19 & 0 & \(;\) & 51 & 11 & 19 & 0 & \(;\) \\
52 & 35 & 19 & 0 & \(;\) & 53 & 41 & 19 & 0 & \(;\) \\
54 & 47 & 19 & 0 & \(;\) & 55 & 53 & 19 & 0 & \(;\) \\
56 & 59 & 19 & 0 & \(;\) & 57 & 65 & 19 & 0 & \(;\) \\
58 & 71 & 19 & 0 & \(;\) & 59 & 77 & 19 & 0 & \(;\) \\
60 & 83 & 19 & 0 & \(;\) & 61 & 107 & 19 & 0 & \(;\)
\end{tabular}
62 118 19 0 ;
```

MEMBER INCIDENCES

DEFINE MATERIAL START
ISOTROPIC CONCRETE
E 453600
POISSON 0.17
DENSITY 0.150336

[^3]```
O
ALPHA 5e-006
DAMP 0.05
TYPE CONCRETE
STRENGTH FCU 576
ISOTROPIC STEEL
E 4.176e+006
POISSON 0.3
DENSITY 0.489024
ALPHA 6e-006
DAMP 0.03
TYPE STEEL
STRENGTH FY 5184 FU 8352 RY 1.5 RT 1.2
END DEFINE MATERIAL
MEMBER PROPERTY AMERICAN
1 TO 40 PRIS YD 4.5 ZD 1
50 TO 62 PRIS YD 0.6667 ZD 3
70 TO 81 PRIS YD 3.167 ZD 1
CONSTANTS
MATERIAL CONCRETE ALL
MEMBER RELEASE
50 51 61 62 BOTH MY MZ
70 71 START MY MZ
70 71 END MY MZ FX
80 81 END MY MZ
80 81 START MY MZ FX
52 TO 55 57 TO 60 START MY MZ
SUPPORTS
141 FIXED
LOAD 1 LOADTYPE Dead TITLE DEAD LOADS
*ARCH LOAD
SELFWEIGHT Y -1.0 LIST 1 TO 40
MEMBER LOAD
1 TO 40 UNI GY -0.103
*DECK AND PARAPET (AS-BUILT)
MEMBER LOAD
70 TO 81 UNI GY -0.98
****DECK AND PARAPET (AS-CONFIGURED/AS-INSPECTED)
***MEMBER LOAD
***70 TO 81 UNI GY -1.13
*TRANSVERSE WALLS
JOINT LOAD
5 37 FY -9.9
```

Client:
Engineer: DWC

[^4]

[^5]

```
MEMBER LOAD
78 UNI GY -0.54 2.75 6
79 TO 81 UNI GY -0.54
LOAD 8 LOADTYPE Live TITLE LIVE LOAD 7
MEMBER LOAD
70 TO 81 UNI GY -0.54
LOAD COMB 11 DL + LL1
11.0 2 1.0
LOAD COMB 12 DL + LL2
11.0 3 1.0
LOAD COMB 13 DL + LL3
11.041.0
LOAD COMB 14 DL + LL4
11.051.0
LOAD COMB 15 DL + LL5
11.06 1.0
LOAD COMB 16 DL + LL6
1 1.071.0
FINISH
```



Job Title:

Client:
Engineer:

```
STAAD SPACE
START JOB INFORMATION
ENGINEER DATE 02-Aug-18
CHECKER DATE 03-Aug-18
JOB NAME LAKE PARK ARCH BRIDGE LOAD RATING
JOB COMMENT ARCH RIBS - H5 TRUCK
ENGINEER NAME DWC
CHECKER NAME SFH
END JOB INFORMATION
INPUT WIDTH 79
UNIT FEET KIP
JOINT COORDINATES
*Node X Y Z
1 0 0 0; 2 2.75 1.789 ; 3 5.5 3.46 ; 4 8.25 5.019 ; 5 11 6.472 0;
6 14 7.942 0; 7 17 9.297 0; 8 20 10.542 0; 9 23 11.68 0; 10 26 12.716 0;
11 29 13.653 0; 12 32 14.493 0; 13 35 15.239 0; 14 38 15.893 0;
15 41 16.456 0; 16 44 16.93 0; 17 47 17.317 0; 18 50 17.616 0;
19 53 17.83 0; 20 56 17.957 0; 21 59 18 0; 22 62 17.957 0; 23 65 17.83 0;
24 68 17.616 0; 25 71 17.317 0; 26 74 16.93 0; 27 77 16.456 0;
28 80 15.893 0; 29 83 15.239 0; 30 86 14.493 0; 31 89 13.653 0;
32 92 12.716 0; 33 95 11.68 0; 34 98 10.542 0; 35 101 9.297 0;
36 104 7.942 0; 37 107 6.472 0; 38 109.75 5.019 0; 39 112.5 3.46 0;
40 115.25 1.789 0; 41 118 0 0;
\begin{tabular}{llllllllll}
50 & 0 & 19 & 0 & \(;\) & 51 & 11 & 19 & 0 & ;
\end{tabular}
\begin{tabular}{llllllllll}
52 & 35 & 19 & 0 & \(;\) & 53 & 41 & 19 & 0 & ;
\end{tabular}
\begin{tabular}{llllllllll}
54 & 47 & 19 & 0 & \(;\) & 55 & 53 & 19 & 0 & ;
\end{tabular}
\begin{tabular}{llllllllll}
56 & 59 & 19 & 0 & \(;\) & 57 & 65 & 19 & 0 & ;
\end{tabular}
\begin{tabular}{llllllllll}
58 & 71 & 19 & 0 & \(;\) & 59 & 77 & 19 & 0 & ;
\end{tabular}
60 83 19 0 ; 61 107 19 0 ;
62 118 19 0 ;
```

MEMBER INCIDENCES


DEFINE MATERIAL START
ISOTROPIC CONCRETE
E 453600
POISSON 0.17
DENSITY 0.150336

[^6]

Job Title:
Client:
Engineer:
ALPHA 5e-006
DAMP 0.05
TYPE CONCRETE
STRENGTH FCU 576

E 4.176e+006
POISSON 0.3
DENSITY 0.489024
ALPHA 6e-006
DAMP 0.03
TYPE STEEL
STRENGTH FY 5184 FU 8352 RY 1.5 RT 1.2
END DEFINE MATERIAL

MEMBER PROPERTY AMERICAN
1 TO 40 PRIS YD 4.5 ZD 1
50 TO 62 PRIS YD 0.6667 ZD 3

CONSTANTS
MATERIAL CONCRETE ALL

MEMBER RELEASE
50516162 BOTH MY MZ
7071 START MY MZ
7071 END MY MZ FX
8081 END MY MZ
8081 START MY MZ FX
52 TO 5557 TO 60 START MY MZ

SUPPORTS
141 FIXED

DEFINE MOVING LOAD
TYPE 1 LOAD 4.6161 .154
DIST 14
TYPE 2 LOAD 1.1544 .616
DIST 14
***LOAD 1 LOADTYPE Dead TITLE DEAD LOADS
**ARCH LOAD
***MEMBER LOAD
***1 TO 40 UNI GY -0.103
$* * * * * * *$ DECK AND PARAPET (AS-BUILT)
******MEMBER LOAD
****DECK AND PARAPET (AS-CONFIGURED/AS-INSPECTED)


Job Title:
Client:
Engineer:
***MEMBER LOAD
***70 TO 81 UNI GY -1.13
****TRANSVERSE WALLS
***JOINT LOAD
***5 37 FY -9.9
***13 29 FY -4.5
***21 FY -2.7
****STRUTS
***JOINT LOAD
***9 172533 FY -1.2
****SPANDREL WALLS
***MEMBER LOAD
718081 UNI GY -0.40
***72 TRAP GY -0.50-0.40
***73 TRAP GY -0.40-0.30
***74 TRAP GY -0.30-0.20
***75 TRAP GY -0.20-0.10
***76 TRAP GY -0.10-0.20
***77 TRAP GY -0.20-0.30
***78 TRAP GY -0.30-0.40
***79 TRAP GY -0.40-0.50
***MEMBER LOAD
***4 53637 UNI GY -1.18

LOAD GENERATION 21
TYPE 10190 XINC 5
LOAD GENERATION 21
TYPE 20190 XINC 5

PERFORM ANALYSIS
FINISH


## Job Information

|  | Engineer | Checked | Approved |
| :--- | :---: | :---: | :---: |
| Name: | DWC | SFH |  |
| Date: | 02-Aug-18 | 03-Aug-18 |  |


| Project ID |  |
| :--- | :--- |
| Project Name |  |

Comments
ARCH RIBS - DEAD LOAD + 90 PSF

| Structure Type | SPACE FRAME |
| :--- | :--- |


| Number of Nodes | 54 | Highest Node | 62 |
| :--- | ---: | :--- | ---: |
| Number of Elements | 65 | Highest Beam | 81 |


| Number of Basic Load Cases | -2 |
| :--- | ---: |
| Number of Combination Load Cases | 7 |

Included in this printout are data for:

| Beams | 1 to 20 |
| :--- | :--- |

Included in this printout are results for load cases:

| Type | L/C |  |
| :---: | :---: | :--- |
| Primary | 1 | DEAD LOADS |
| Combination | 11 | $\mathrm{DL}+\mathrm{LL} 1$ |
| Combination | 12 | $\mathrm{DL}+\mathrm{LL} 2$ |
| Combination | 13 | $\mathrm{DL}+\mathrm{LL} 3$ |
| Combination | 14 | $\mathrm{DL}+\mathrm{LL} 4$ |
| Combination | 15 | $\mathrm{DL}+\mathrm{LL5}$ |
| Combination | 16 | $\mathrm{DL}+\mathrm{LL} 6$ |
| Combination | 17 | $\mathrm{DL}+\mathrm{LL} 7$ |

## Beam End Forces

Sign convention is as the action of the joint on the beam.

|  |  |  | Axial | Shear |  | Torsion | Bending |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Beam | Node | L/C | $\begin{aligned} & \hline \text { Fx } \\ & \text { (kip) } \end{aligned}$ | $\begin{gathered} \hline \text { Fy } \\ \text { (kip) } \end{gathered}$ | $\begin{gathered} \hline \text { Fz } \\ \text { (kip) } \end{gathered}$ | $\begin{gathered} \mathbf{M x} \\ \left(\mathrm{kip}^{2} \mathrm{ft}\right) \end{gathered}$ | $\begin{gathered} \text { My } \\ (\text { kip ft) } \end{gathered}$ | $\begin{gathered} \mathrm{Mz} \\ (\text { kip ft) } \end{gathered}$ |
| 1 | 1 | 1:DEAD LOAD | 261.428 | 4.086 | 0.000 | 0.000 | 0.000 | 143.871 |
|  |  | 11:DL + LL1 | 283.604 | -0.838 | 0.000 | 0.000 | 0.000 | 108.255 |
|  |  | 12:DL + LL2 | 296.482 | 6.245 | 0.000 | 0.000 | 0.000 | 182.838 |
|  |  | 13:DL + LL3 | 297.069 | -6.001 | 0.000 | 0.000 | 0.000 | 41.316 |
|  |  | 14:DL + LL4 | 283.016 | 11.408 | 0.000 | 0.000 | 0.000 | 249.777 |
|  |  | 15:DL + LL5 | 305.191 | 6.484 | 0.000 | 0.000 | 0.000 | 214.161 |



Beam End Forces Cont...

|  |  |  | Axial | Shear |  | Torsion | Bending |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Beam | Node | L/C | $\begin{gathered} \text { Fx } \\ \text { (kip) } \end{gathered}$ | $\begin{gathered} \hline \text { Fy } \\ \text { (kip) } \end{gathered}$ | $\begin{gathered} \text { Fz } \\ \text { (kip) } \end{gathered}$ | $\begin{gathered} \mathbf{M x} \\ \left(\text { kip }^{\prime} \mathrm{ft}\right) \end{gathered}$ | $\begin{gathered} \text { My } \\ \left(\text { kip }^{\prime} \mathrm{ft}\right) \end{gathered}$ | $\begin{gathered} \mathrm{Mz} \\ \text { (kip }^{\prime} \mathrm{ft} \text { ) } \end{gathered}$ |
|  |  | 11:DL + LL1 | -282.209 | 2.982 | 0.000 | 0.000 | 0.000 | -114.521 |
|  |  | 12:DL + LL2 | -295.087 | -4.102 | 0.000 | 0.000 | 0.000 | -165.865 |
|  |  | 13:DL + LL3 | -295.675 | 8.144 | 0.000 | 0.000 | 0.000 | -64.519 |
|  |  | 14:DL + LL4 | -281.621 | -9.264 | 0.000 | 0.000 | 0.000 | -215.867 |
|  |  | 15:DL + LL5 | -303.797 | -4.340 | 0.000 | 0.000 | 0.000 | -196.406 |
|  |  | 16:DL + LL6 | -273.500 | 3.220 | 0.000 | 0.000 | 0.000 | -83.980 |
|  |  | 17:DL + LL7 | -317.263 | 0.822 | 0.000 | 0.000 | 0.000 | -146.404 |
| 2 | 2 | 1:DEAD LOAD | 259.851 | 9.934 | 0.000 | 0.000 | 0.000 | 133.982 |
|  |  | 11:DL + LL1 | 282.167 | 5.694 | 0.000 | 0.000 | 0.000 | 114.521 |
|  |  | 12:DL + LL2 | 294.822 | 13.170 | 0.000 | 0.000 | 0.000 | 165.865 |
|  |  | 13:DL + LL3 | 295.786 | 0.948 | 0.000 | 0.000 | 0.000 | 64.519 |
|  |  | 14:DL + LL4 | 281.204 | 17.916 | 0.000 | 0.000 | 0.000 | 215.867 |
|  |  | 15:DL + LL5 | 303.520 | 13.676 | 0.000 | 0.000 | 0.000 | 196.406 |
|  |  | 16:DL + LL6 | 273.469 | 5.188 | 0.000 | 0.000 | 0.000 | 83.980 |
|  |  | 17:DL + LL7 | 317.138 | 8.930 | 0.000 | 0.000 | 0.000 | 146.404 |
|  | 3 | 1:DEAD LOAD | -258.549 | -7.791 | 0.000 | 0.000 | 0.000 | -105.464 |
|  |  | 11:DL + LL1 | -280.865 | -3.551 | 0.000 | 0.000 | 0.000 | -99.646 |
|  |  | 12:DL + LL2 | -293.519 | -11.026 | 0.000 | 0.000 | 0.000 | -126.935 |
|  |  | 13:DL + LL3 | -294.483 | 1.196 | 0.000 | 0.000 | 0.000 | -64.917 |
|  |  | 14:DL + LL4 | -279.901 | -15.773 | 0.000 | 0.000 | 0.000 | -161.664 |
|  |  | 15:DL + LL5 | -302.217 | -11.533 | 0.000 | 0.000 | 0.000 | -155.846 |
|  |  | 16:DL + LL6 | -272.167 | -3.044 | 0.000 | 0.000 | 0.000 | -70.735 |
|  |  | 17:DL + LL7 | -315.835 | -6.786 | 0.000 | 0.000 | 0.000 | -121.117 |
| 3 | 3 | 1:DEAD LOAD | 258.194 | 15.616 | 0.000 | 0.000 | 0.000 | 105.464 |
|  |  | 11:DL + LL1 | 280.629 | 12.053 | 0.000 | 0.000 | 0.000 | 99.646 |
|  |  | 12:DL + LL2 | 293.051 | 19.909 | 0.000 | 0.000 | 0.000 | 126.935 |
|  |  | 13:DL + LL3 | 294.384 | 7.721 | 0.000 | 0.000 | 0.000 | 64.917 |
|  |  | 14:DL + LL4 | 279.295 | 24.240 | 0.000 | 0.000 | 0.000 | 161.664 |
|  |  | 15:DL + LL5 | 301.729 | 20.678 | 0.000 | 0.000 | 0.000 | 155.846 |
|  |  | 16:DL + LL6 | 271.950 | 11.284 | 0.000 | 0.000 | 0.000 | 70.735 |
|  |  | 17:DL + LL7 | 315.485 | 16.346 | 0.000 | 0.000 | 0.000 | 121.117 |
|  | 4 | 1:DEAD LOAD | -256.979 | -13.472 | 0.000 | 0.000 | 0.000 | -59.489 |
|  |  | 11:DL + LL1 | -279.413 | -9.910 | 0.000 | 0.000 | 0.000 | -64.932 |
|  |  | 12:DL + LL2 | -291.836 | -17.765 | 0.000 | 0.000 | 0.000 | -67.388 |
|  |  | 13:DL + LL3 | -293.169 | -5.578 | 0.000 | 0.000 | 0.000 | -43.897 |
|  |  | 14:DL + LL4 | -278.080 | -22.097 | 0.000 | 0.000 | 0.000 | -88.424 |
|  |  | 15:DL + LL5 | -300.514 | -18.534 | 0.000 | 0.000 | 0.000 | -93.867 |
|  |  | 16:DL + LL6 | -270.735 | -9.140 | 0.000 | 0.000 | 0.000 | -38.454 |
|  |  | 17:DL + LL7 | -314.270 | -14.203 | 0.000 | 0.000 | 0.000 | -72.832 |
| 4 | 4 | 1:DEAD LOAD | 256.466 | 21.085 | 0.000 | 0.000 | 0.000 | 59.489 |
|  |  | 11:DL + LL1 | 278.997 | 18.189 | 0.000 | 0.000 | 0.000 | 64.932 |
|  |  | 12:DL + LL2 | 291.181 | 26.409 | 0.000 | 0.000 | 0.000 | 67.388 |
|  |  | 13:DL + LL3 | 292.875 | 14.267 | 0.000 | 0.000 | 0.000 | 43.897 |
|  |  | 14:DL + LL4 | 277.302 | 30.332 | 0.000 | 0.000 | 0.000 | 88.424 |



Beam End Forces Cont...

|  |  |  | Axial | Shear |  | Torsion | Bending |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Beam | Node | L/C | $\begin{gathered} \text { Fx } \\ \text { (kip) } \end{gathered}$ | $\begin{gathered} \text { Fy } \\ \text { (kip) } \end{gathered}$ | $\begin{gathered} \hline \text { Fz } \\ \text { (kip) } \\ \hline \end{gathered}$ | $\begin{gathered} \mathbf{M x} \\ \text { (kip-ft) } \end{gathered}$ | $\begin{gathered} \mathrm{My} \\ \text { (kipft) }^{2} \end{gathered}$ | $\begin{gathered} \mathrm{Mz} \\ \text { (kipft) }^{2} \end{gathered}$ |
|  |  | 15:DL + LL5 | 299.833 | 27.436 | 0.000 | 0.000 | 0.000 | 93.867 |
|  |  | 16:DL + LL6 | 270.345 | 17.163 | 0.000 | 0.000 | 0.000 | 38.454 |
|  |  | 17:DL + LL7 | 313.711 | 23.514 | 0.000 | 0.000 | 0.000 | 72.832 |
|  | 5 | 1:DEAD LOAD | -253.619 | -15.696 | 0.000 | 0.000 | 0.000 | -2.289 |
|  |  | 11:DL + LL1 | -276.149 | -12.801 | 0.000 | 0.000 | 0.000 | -16.739 |
|  |  | 12:DL + LL2 | -288.333 | -21.021 | 0.000 | 0.000 | 0.000 | 6.372 |
|  |  | 13:DL + LL3 | -290.027 | -8.878 | 0.000 | 0.000 | 0.000 | -7.902 |
|  |  | 14:DL + LL4 | -274.455 | -24.943 | 0.000 | 0.000 | 0.000 | -2.465 |
|  |  | 15:DL + LL5 | -296.985 | -22.047 | 0.000 | 0.000 | 0.000 | -16.914 |
|  |  | 16:DL + LL6 | -267.497 | -11.774 | 0.000 | 0.000 | 0.000 | 6.547 |
|  |  | 17:DL + LL7 | -310.863 | -18.125 | 0.000 | 0.000 | 0.000 | -8.078 |
| 5 | 5 | 1:DEAD LOAD | 238.041 | -7.162 | 0.000 | 0.000 | 0.000 | 2.289 |
|  |  | 11:DL + LL1 | 260.649 | -9.370 | 0.000 | 0.000 | 0.000 | 16.739 |
|  |  | 12:DL + LL2 | 268.419 | -9.269 | 0.000 | 0.000 | 0.000 | -6.372 |
|  |  | 13:DL + LL3 | 274.640 | -12.868 | 0.000 | 0.000 | 0.000 | 7.902 |
|  |  | 14:DL + LL4 | 254.428 | -5.771 | 0.000 | 0.000 | 0.000 | 2.465 |
|  |  | 15:DL + LL5 | 277.035 | -7.979 | 0.000 | 0.000 | 0.000 | 16.914 |
|  |  | 16:DL + LL6 | 252.032 | -10.660 | 0.000 | 0.000 | 0.000 | -6.547 |
|  |  | 17:DL + LL7 | 291.026 | -11.477 | 0.000 | 0.000 | 0.000 | 8.078 |
|  | 6 | 1:DEAD LOAD | -235.161 | 13.041 | 0.000 | 0.000 | 0.000 | -36.037 |
|  |  | 11:DL + LL1 | -257.768 | 15.249 | 0.000 | 0.000 | 0.000 | -57.863 |
|  |  | 12:DL + LL2 | -265.538 | 15.147 | 0.000 | 0.000 | 0.000 | -34.413 |
|  |  | 13:DL + LL3 | -271.759 | 18.747 | 0.000 | 0.000 | 0.000 | -60.711 |
|  |  | 14:DL + LL4 | -251.547 | 11.650 | 0.000 | 0.000 | 0.000 | -31.565 |
|  |  | 15:DL + LL5 | -274.155 | 13.858 | 0.000 | 0.000 | 0.000 | -53.391 |
|  |  | 16:DL + LL6 | -249.152 | 16.539 | 0.000 | 0.000 | 0.000 | -38.885 |
|  |  | 17:DL + LL7 | -288.146 | 17.355 | 0.000 | 0.000 | 0.000 | -56.239 |
| 6 | 6 | 1:DEAD LOAD | 235.454 | -5.657 | 0.000 | 0.000 | 0.000 | 36.037 |
|  |  | 11:DL + LL1 | 258.120 | -7.155 | 0.000 | 0.000 | 0.000 | 57.863 |
|  |  | 12:DL + LL2 | 265.883 | -6.810 | 0.000 | 0.000 | 0.000 | 34.413 |
|  |  | 13:DL + LL3 | 272.214 | -10.212 | 0.000 | 0.000 | 0.000 | 60.711 |
|  |  | 14:DL + LL4 | 251.789 | -3.753 | 0.000 | 0.000 | 0.000 | 31.565 |
|  |  | 15:DL + LL5 | 274.455 | -5.250 | 0.000 | 0.000 | 0.000 | 53.391 |
|  |  | 16:DL + LL6 | 249.548 | -8.714 | 0.000 | 0.000 | 0.000 | 38.885 |
|  |  | 17:DL + LL7 | 288.549 | -8.307 | 0.000 | 0.000 | 0.000 | 56.239 |
|  | 7 | 1:DEAD LOAD | -234.398 | 7.996 | 0.000 | 0.000 | 0.000 | -58.508 |
|  |  | 11:DL + LL1 | -257.064 | 9.493 | 0.000 | 0.000 | 0.000 | -85.265 |
|  |  | 12:DL + LL2 | -264.826 | 9.148 | 0.000 | 0.000 | 0.000 | -60.678 |
|  |  | 13:DL + LL3 | -271.158 | 12.550 | 0.000 | 0.000 | 0.000 | -98.176 |
|  |  | 14:DL + LL4 | -250.732 | 6.091 | 0.000 | 0.000 | 0.000 | -47.767 |
|  |  | 15:DL + LL5 | -273.398 | 7.589 | 0.000 | 0.000 | 0.000 | -74.524 |
|  |  | 16:DL + LL6 | -248.492 | 11.053 | 0.000 | 0.000 | 0.000 | -71.419 |
|  |  | 17:DL + LL7 | -287.492 | 10.646 | 0.000 | 0.000 | 0.000 | -87.435 |
| 7 | 7 | 1:DEAD LOAD | 234.533 | -0.757 | 0.000 | 0.000 | 0.000 | 58.508 |



Beam End Forces Cont...

|  |  |  | Axial | Shear |  | Torsion | Bending |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Beam | Node | L/C | $\begin{gathered} \text { Fx } \\ \text { (kip) } \end{gathered}$ | $\begin{gathered} \text { Fy } \\ \text { (kip) } \end{gathered}$ | $\begin{gathered} \text { Fz } \\ \text { (kip) } \end{gathered}$ | $\begin{gathered} \mathbf{M x} \\ \left(\text { kip }^{\prime} \mathrm{ft}\right) \end{gathered}$ | $\begin{gathered} \text { My } \\ \left(\text { kip }^{\prime} \mathrm{ft}\right) \end{gathered}$ | Mz <br> (kip-ft) |
|  |  | 11:DL + LL1 | 257.234 | -1.555 | 0.000 | 0.000 | 0.000 | 85.265 |
|  |  | 12:DL + LL2 | 264.983 | -0.970 | 0.000 | 0.000 | 0.000 | 60.678 |
|  |  | 13:DL + LL3 | 271.416 | -4.175 | 0.000 | 0.000 | 0.000 | 98.176 |
|  |  | 14:DL + LL4 | 250.801 | 1.650 | 0.000 | 0.000 | 0.000 | 47.767 |
|  |  | 15:DL + LL5 | 273.502 | 0.853 | 0.000 | 0.000 | 0.000 | 74.524 |
|  |  | 16:DL + LL6 | 248.714 | -3.378 | 0.000 | 0.000 | 0.000 | 71.419 |
|  |  | 17:DL + LL7 | 287.684 | -1.768 | 0.000 | 0.000 | 0.000 | 87.435 |
|  | 8 | 1:DEAD LOAD | -233.562 | 3.096 | 0.000 | 0.000 | 0.000 | -64.767 |
|  |  | 11:DL + LL1 | -256.264 | 3.893 | 0.000 | 0.000 | 0.000 | -94.113 |
|  |  | 12:DL + LL2 | -264.012 | 3.309 | 0.000 | 0.000 | 0.000 | -67.628 |
|  |  | 13:DL + LL3 | -270.445 | 6.514 | 0.000 | 0.000 | 0.000 | -115.535 |
|  |  | 14:DL + LL4 | -249.831 | 0.688 | 0.000 | 0.000 | 0.000 | -46.205 |
|  |  | 15:DL + LL5 | -272.532 | 1.486 | 0.000 | 0.000 | 0.000 | -75.551 |
|  |  | 16:DL + LL6 | -247.744 | 5.716 | 0.000 | 0.000 | 0.000 | -86.189 |
|  |  | 17:DL + LL7 | -286.714 | 4.106 | 0.000 | 0.000 | 0.000 | -96.974 |
| 8 | 8 | 1:DEAD LOAD | 233.547 | 4.099 | 0.000 | 0.000 | 0.000 | 64.767 |
|  |  | 11:DL + LL1 | 256.262 | 4.002 | 0.000 | 0.000 | 0.000 | 94.113 |
|  |  | 12:DL + LL2 | 263.989 | 4.825 | 0.000 | 0.000 | 0.000 | 67.628 |
|  |  | 13:DL + LL3 | 270.518 | 1.819 | 0.000 | 0.000 | 0.000 | 115.535 |
|  |  | 14:DL + LL4 | 249.733 | 7.007 | 0.000 | 0.000 | 0.000 | 46.205 |
|  |  | 15:DL + LL5 | 272.448 | 6.909 | 0.000 | 0.000 | 0.000 | 75.551 |
|  |  | 16:DL + LL6 | 247.802 | 1.917 | 0.000 | 0.000 | 0.000 | 86.189 |
|  |  | 17:DL + LL7 | 286.704 | 4.727 | 0.000 | 0.000 | 0.000 | 96.974 |
|  | 9 | 1:DEAD LOAD | -232.660 | -1.761 | 0.000 | 0.000 | 0.000 | -55.365 |
|  |  | 11:DL + LL1 | -255.375 | -1.663 | 0.000 | 0.000 | 0.000 | -85.025 |
|  |  | 12:DL + LL2 | -263.102 | -2.486 | 0.000 | 0.000 | 0.000 | -55.899 |
|  |  | 13:DL + LL3 | -269.630 | 0.519 | 0.000 | 0.000 | 0.000 | -113.450 |
|  |  | 14:DL + LL4 | -248.846 | -4.668 | 0.000 | 0.000 | 0.000 | -27.474 |
|  |  | 15:DL + LL5 | -271.561 | -4.571 | 0.000 | 0.000 | 0.000 | -57.135 |
|  |  | 16:DL + LL6 | -246.915 | 0.422 | 0.000 | 0.000 | 0.000 | -83.790 |
|  |  | 17:DL + LL7 | -285.817 | -2.388 | 0.000 | 0.000 | 0.000 | -85.559 |
| 9 | 9 | 1:DEAD LOAD | 232.110 | 7.617 | 0.000 | 0.000 | 0.000 | 55.365 |
|  |  | 11:DL + LL1 | 254.818 | 8.202 | 0.000 | 0.000 | 0.000 | 85.025 |
|  |  | 12:DL + LL2 | 262.516 | 9.257 | 0.000 | 0.000 | 0.000 | 55.899 |
|  |  | 13:DL + LL3 | 269.133 | 6.449 | 0.000 | 0.000 | 0.000 | 113.450 |
|  |  | 14:DL + LL4 | 248.202 | 11.010 | 0.000 | 0.000 | 0.000 | 27.474 |
|  |  | 15:DL + LL5 | 270.910 | 11.594 | 0.000 | 0.000 | 0.000 | 57.135 |
|  |  | 16:DL + LL6 | 246.425 | 5.864 | 0.000 | 0.000 | 0.000 | 83.790 |
|  |  | 17:DL + LL7 | 285.224 | 9.841 | 0.000 | 0.000 | 0.000 | 85.559 |
|  | 10 | 1:DEAD LOAD | -231.302 | -5.278 | 0.000 | 0.000 | 0.000 | -34.901 |
|  |  | 11:DL + LL1 | -254.010 | -5.863 | 0.000 | 0.000 | 0.000 | -62.706 |
|  |  | 12:DL + LL2 | -261.709 | -6.918 | 0.000 | 0.000 | 0.000 | -30.232 |
|  |  | 13:DL + LL3 | -268.325 | -4.110 | 0.000 | 0.000 | 0.000 | -96.694 |
|  |  | 14:DL + LL4 | -247.394 | -8.671 | 0.000 | 0.000 | 0.000 | 3.757 |



Beam End Forces Cont...

|  |  |  | Axial | Shear |  | Torsion | Bending |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Beam | Node | L/C | $\begin{aligned} & \hline \text { Fx } \\ & \text { (kip) } \\ & \hline \end{aligned}$ | $\begin{gathered} \hline \text { Fy } \\ \text { (kip) } \end{gathered}$ | $\begin{gathered} \hline \text { Fz } \\ \text { (kip) } \end{gathered}$ | $\begin{gathered} \mathrm{Mx} \\ \text { (kipft) } \end{gathered}$ | $\begin{gathered} \text { My } \\ \left(\text { kip }^{2} \mathrm{ft}\right) \end{gathered}$ | $\begin{gathered} \mathrm{Mz} \\ \text { (kipft) } \end{gathered}$ |
|  |  | 15:DL + LL5 | -270.102 | -9.256 | 0.000 | 0.000 | 0.000 | -24.047 |
|  |  | 16:DL + LL6 | -245.617 | -3.525 | 0.000 | 0.000 | 0.000 | -68.890 |
|  |  | 17:DL + LL7 | -284.417 | -7.503 | 0.000 | 0.000 | 0.000 | -58.036 |
| 10 | 10 | 1:DEAD LOAD | 231.043 | 12.163 | 0.000 | 0.000 | 0.000 | 34.901 |
|  |  | 11:DL + LL1 | 253.723 | 13.423 | 0.000 | 0.000 | 0.000 | 62.706 |
|  |  | 12:DL + LL2 | 261.387 | 14.707 | 0.000 | 0.000 | 0.000 | 30.232 |
|  |  | 13:DL + LL3 | 268.084 | 12.097 | 0.000 | 0.000 | 0.000 | 96.694 |
|  |  | 14:DL + LL4 | 247.026 | 16.033 | 0.000 | 0.000 | 0.000 | -3.757 |
|  |  | 15:DL + LL5 | 269.707 | 17.294 | 0.000 | 0.000 | 0.000 | 24.047 |
|  |  | 16:DL + LL6 | 245.403 | 10.837 | 0.000 | 0.000 | 0.000 | 68.890 |
|  |  | 17:DL + LL7 | 284.067 | 15.968 | 0.000 | 0.000 | 0.000 | 58.036 |
|  | 11 | 1:DEAD LOAD | -230.312 | -9.824 | 0.000 | 0.000 | 0.000 | -0.350 |
|  |  | 11:DL + LL1 | -252.993 | -11.085 | 0.000 | 0.000 | 0.000 | -24.192 |
|  |  | 12:DL + LL2 | -260.656 | -12.368 | 0.000 | 0.000 | 0.000 | 12.316 |
|  |  | 13:DL + LL3 | -267.353 | -9.759 | 0.000 | 0.000 | 0.000 | -62.349 |
|  |  | 14:DL + LL4 | -246.296 | -13.695 | 0.000 | 0.000 | 0.000 | 50.473 |
|  |  | 15:DL + LL5 | -268.976 | -14.955 | 0.000 | 0.000 | 0.000 | 26.631 |
|  |  | 16:DL + LL6 | -244.673 | -8.498 | 0.000 | 0.000 | 0.000 | -38.506 |
|  |  | 17:DL + LL7 | -283.337 | -13.629 | 0.000 | 0.000 | 0.000 | -11.526 |
| 11 | 11 | 1:DEAD LOAD | 229.919 | 16.665 | 0.000 | 0.000 | 0.000 | 0.350 |
|  |  | 11:DL + LL1 | 252.552 | 18.599 | 0.000 | 0.000 | 0.000 | 24.192 |
|  |  | 12:DL + LL2 | 260.174 | 20.110 | 0.000 | 0.000 | 0.000 | -12.316 |
|  |  | 13:DL + LL3 | 266.945 | 17.700 | 0.000 | 0.000 | 0.000 | 62.349 |
|  |  | 14:DL + LL4 | 245.780 | 21.008 | 0.000 | 0.000 | 0.000 | -50.473 |
|  |  | 15:DL + LL5 | 268.413 | 22.942 | 0.000 | 0.000 | 0.000 | -26.631 |
|  |  | 16:DL + LL6 | 244.312 | 15.766 | 0.000 | 0.000 | 0.000 | 38.506 |
|  |  | 17:DL + LL7 | 282.807 | 22.044 | 0.000 | 0.000 | 0.000 | 11.526 |
|  | 12 | 1:DEAD LOAD | -229.264 | -14.326 | 0.000 | 0.000 | 0.000 | 47.925 |
|  |  | 11:DL + LL1 | -251.897 | -16.260 | 0.000 | 0.000 | 0.000 | 30.108 |
|  |  | 12:DL + LL2 | -259.519 | -17.771 | 0.000 | 0.000 | 0.000 | 71.323 |
|  |  | 13:DL + LL3 | -266.290 | -15.362 | 0.000 | 0.000 | 0.000 | -10.849 |
|  |  | 14:DL + LL4 | -245.125 | -18.670 | 0.000 | 0.000 | 0.000 | 112.279 |
|  |  | 15:DL + LL5 | -267.758 | -20.604 | 0.000 | 0.000 | 0.000 | 94.463 |
|  |  | 16:DL + LL6 | -243.658 | -13.427 | 0.000 | 0.000 | 0.000 | 6.968 |
|  |  | 17:DL + LL7 | -282.152 | -19.705 | 0.000 | 0.000 | 0.000 | 53.506 |
| 12 | 12 | 1:DEAD LOAD | 228.746 | 21.033 | 0.000 | 0.000 | 0.000 | -47.925 |
|  |  | 11:DL + LL1 | 251.313 | 23.629 | 0.000 | 0.000 | 0.000 | -30.108 |
|  |  | 12:DL + LL2 | 258.887 | 25.363 | 0.000 | 0.000 | 0.000 | -71.323 |
|  |  | 13:DL + LL3 | 265.726 | 23.152 | 0.000 | 0.000 | 0.000 | 10.849 |
|  |  | 14:DL + LL4 | 244.474 | 25.839 | 0.000 | 0.000 | 0.000 | -112.279 |
|  |  | 15:DL + LL5 | 267.040 | 28.435 | 0.000 | 0.000 | 0.000 | -94.463 |
|  |  | 16:DL + LL6 | 243.160 | 20.556 | 0.000 | 0.000 | 0.000 | -6.968 |
|  |  | 17:DL + LL7 | 281.454 | 27.959 | 0.000 | 0.000 | 0.000 | -53.506 |
|  | 13 | 1:DEAD LOAD | -228.165 | -18.695 | 0.000 | 0.000 | 0.000 | 109.331 |



Beam End Forces Cont...

|  |  |  | Axial | Shear |  | Torsion | Bending |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Beam | Node | L/C | $\begin{gathered} \text { Fx } \\ \text { (kip) } \end{gathered}$ | $\begin{gathered} \hline \text { Fy } \\ \text { (kip) } \end{gathered}$ | $\begin{gathered} \text { Fz } \\ \text { (kip) } \end{gathered}$ | $\begin{gathered} \mathbf{M x} \\ \left(\text { kip }^{\prime} \mathrm{ft}\right) \end{gathered}$ | $\begin{gathered} \text { My } \\ \text { (kip } \mathrm{ft}) \end{gathered}$ | $\begin{gathered} \mathrm{Mz} \\ \text { (kip }^{\prime} \mathrm{ft} \text { ) } \end{gathered}$ |
|  |  | 11:DL + LL1 | -250.731 | -21.291 | 0.000 | 0.000 | 0.000 | 99.540 |
|  |  | 12:DL + LL2 | -258.306 | -23.024 | 0.000 | 0.000 | 0.000 | 146.113 |
|  |  | 13:DL + LL3 | -265.145 | -20.814 | 0.000 | 0.000 | 0.000 | 57.109 |
|  |  | 14:DL + LL4 | -243.892 | -23.501 | 0.000 | 0.000 | 0.000 | 188.544 |
|  |  | 15:DL + LL5 | -266.459 | -26.097 | 0.000 | 0.000 | 0.000 | 178.752 |
|  |  | 16:DL + LL6 | -242.578 | -18.218 | 0.000 | 0.000 | 0.000 | 66.900 |
|  |  | 17:DL + LL7 | -280.872 | -25.620 | 0.000 | 0.000 | 0.000 | 136.322 |
| 13 | 13 | 1:DEAD LOAD | 215.772 | -6.888 | 0.000 | 0.000 | 0.000 | -109.331 |
|  |  | 11:DL + LL1 | 237.426 | -4.477 | 0.000 | 0.000 | 0.000 | -99.540 |
|  |  | 12:DL + LL2 | 243.259 | -10.707 | 0.000 | 0.000 | 0.000 | -146.113 |
|  |  | 13:DL + LL3 | 252.421 | -2.573 | 0.000 | 0.000 | 0.000 | -57.109 |
|  |  | 14:DL + LL4 | 228.264 | -12.611 | 0.000 | 0.000 | 0.000 | -188.544 |
|  |  | 15:DL + LL5 | 249.918 | -10.200 | 0.000 | 0.000 | 0.000 | -178.752 |
|  |  | 16:DL + LL6 | 230.767 | -4.984 | 0.000 | 0.000 | 0.000 | -66.900 |
|  |  | 17:DL + LL7 | 264.913 | -8.296 | 0.000 | 0.000 | 0.000 | -136.322 |
|  | 14 | 1:DEAD LOAD | -215.262 | 9.226 | 0.000 | 0.000 | 0.000 | 84.592 |
|  |  | 11:DL + LL1 | -236.916 | 6.816 | 0.000 | 0.000 | 0.000 | 82.203 |
|  |  | 12:DL + LL2 | -242.749 | 13.045 | 0.000 | 0.000 | 0.000 | 109.648 |
|  |  | 13:DL + LL3 | -251.911 | 4.911 | 0.000 | 0.000 | 0.000 | 45.619 |
|  |  | 14:DL + LL4 | -227.755 | 14.950 | 0.000 | 0.000 | 0.000 | 146.231 |
|  |  | 15:DL + LL5 | -249.409 | 12.539 | 0.000 | 0.000 | 0.000 | 143.842 |
|  |  | 16:DL + LL6 | -230.257 | 7.322 | 0.000 | 0.000 | 0.000 | 48.008 |
|  |  | 17:DL + LL7 | -264.403 | 10.635 | 0.000 | 0.000 | 0.000 | 107.258 |
| 14 | 14 | 1:DEAD LOAD | 215.440 | -2.952 | 0.000 | 0.000 | 0.000 | -84.592 |
|  |  | 11:DL + LL1 | 237.014 | 0.088 | 0.000 | 0.000 | 0.000 | -82.203 |
|  |  | 12:DL + LL2 | 243.026 | -5.969 | 0.000 | 0.000 | 0.000 | -109.648 |
|  |  | 13:DL + LL3 | 251.947 | 2.429 | 0.000 | 0.000 | 0.000 | -45.619 |
|  |  | 14:DL + LL4 | 228.094 | -8.309 | 0.000 | 0.000 | 0.000 | -146.231 |
|  |  | 15:DL + LL5 | 249.668 | -5.269 | 0.000 | 0.000 | 0.000 | -143.842 |
|  |  | 16:DL + LL6 | 230.372 | -0.612 | 0.000 | 0.000 | 0.000 | -48.008 |
|  |  | 17:DL + LL7 | 264.601 | -2.928 | 0.000 | 0.000 | 0.000 | -107.258 |
|  | 15 | 1:DEAD LOAD | -215.001 | 5.291 | 0.000 | 0.000 | 0.000 | 72.012 |
|  |  | 11:DL + LL1 | -236.575 | 2.250 | 0.000 | 0.000 | 0.000 | 78.904 |
|  |  | 12:DL + LL2 | -242.587 | 8.307 | 0.000 | 0.000 | 0.000 | 87.859 |
|  |  | 13:DL + LL3 | -251.508 | -0.090 | 0.000 | 0.000 | 0.000 | 49.464 |
|  |  | 14:DL + LL4 | -227.655 | 10.648 | 0.000 | 0.000 | 0.000 | 117.299 |
|  |  | 15:DL + LL5 | -249.229 | 7.607 | 0.000 | 0.000 | 0.000 | 124.191 |
|  |  | 16:DL + LL6 | -229.933 | 2.950 | 0.000 | 0.000 | 0.000 | 42.572 |
|  |  | 17:DL + LL7 | -264.162 | 5.267 | 0.000 | 0.000 | 0.000 | 94.751 |
| 15 | 15 | 1:DEAD LOAD | 204.452 | -1.638 | 0.000 | 0.000 | 0.000 | -72.012 |
|  |  | 11:DL + LL1 | 224.179 | 1.114 | 0.000 | 0.000 | 0.000 | -78.904 |
|  |  | 12:DL + LL2 | 230.955 | -4.863 | 0.000 | 0.000 | 0.000 | -87.859 |
|  |  | 13:DL + LL3 | 238.966 | 1.533 | 0.000 | 0.000 | 0.000 | -49.464 |
|  |  | 14:DL + LL4 | 216.169 | -5.282 | 0.000 | 0.000 | 0.000 | -117.299 |



Beam End Forces Cont...

|  |  |  | Axial | Shear |  | Torsion | Bending |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Beam | Node | L/C | $\begin{aligned} & \hline \text { Fx } \\ & \text { (kip) } \\ & \hline \end{aligned}$ | $\begin{gathered} \hline \text { Fy } \\ \text { (kip) } \end{gathered}$ | $\begin{gathered} \hline \text { Fz } \\ \text { (kip) } \end{gathered}$ | $\begin{gathered} \mathrm{Mx} \\ \text { (kipft) } \end{gathered}$ | $\begin{gathered} \text { My } \\ \left(\text { kip }^{2} \mathrm{ft}\right) \end{gathered}$ | $\begin{gathered} \mathrm{Mz} \\ \left(\mathrm{kip}^{2} \mathrm{ft}\right) \end{gathered}$ |
|  |  | 15:DL + LL5 | 235.896 | -2.530 | 0.000 | 0.000 | 0.000 | -124.191 |
|  |  | 16:DL + LL6 | 219.238 | -1.219 | 0.000 | 0.000 | 0.000 | -42.572 |
|  |  | 17:DL + LL7 | 250.683 | -2.111 | 0.000 | 0.000 | 0.000 | -94.751 |
|  | 16 | 1:DEAD LOAD | -204.082 | 3.976 | 0.000 | 0.000 | 0.000 | 63.486 |
|  |  | 11:DL + LL1 | -223.810 | 1.224 | 0.000 | 0.000 | 0.000 | 78.736 |
|  |  | 12:DL + LL2 | -230.586 | 7.201 | 0.000 | 0.000 | 0.000 | 69.538 |
|  |  | 13:DL + LL3 | -238.596 | 0.805 | 0.000 | 0.000 | 0.000 | 50.569 |
|  |  | 14:DL + LL4 | -215.799 | 7.621 | 0.000 | 0.000 | 0.000 | 97.705 |
|  |  | 15:DL + LL5 | -235.526 | 4.869 | 0.000 | 0.000 | 0.000 | 112.955 |
|  |  | 16:DL + LL6 | -218.869 | 3.557 | 0.000 | 0.000 | 0.000 | 35.319 |
|  |  | 17:DL + LL7 | -250.313 | 4.450 | 0.000 | 0.000 | 0.000 | 84.788 |
| 16 | 16 | 1:DEAD LOAD | 204.113 | 1.823 | 0.000 | 0.000 | 0.000 | -63.486 |
|  |  | 11:DL + LL1 | 223.754 | 5.134 | 0.000 | 0.000 | 0.000 | -78.736 |
|  |  | 12:DL + LL2 | 230.697 | -0.648 | 0.000 | 0.000 | 0.000 | -69.538 |
|  |  | 13:DL + LL3 | 238.523 | 5.973 | 0.000 | 0.000 | 0.000 | -50.569 |
|  |  | 14:DL + LL4 | 215.929 | -1.487 | 0.000 | 0.000 | 0.000 | -97.705 |
|  |  | 15:DL + LL5 | 235.570 | 1.824 | 0.000 | 0.000 | 0.000 | -112.955 |
|  |  | 16:DL + LL6 | 218.882 | 2.662 | 0.000 | 0.000 | 0.000 | -35.319 |
|  |  | 17:DL + LL7 | 250.339 | 2.663 | 0.000 | 0.000 | 0.000 | -84.788 |
|  | 17 | 1:DEAD LOAD | -203.811 | 0.515 | 0.000 | 0.000 | 0.000 | 65.464 |
|  |  | 11:DL + LL1 | -223.452 | -2.796 | 0.000 | 0.000 | 0.000 | 90.730 |
|  |  | 12:DL + LL2 | -230.396 | 2.986 | 0.000 | 0.000 | 0.000 | 64.042 |
|  |  | 13:DL + LL3 | -238.221 | -3.635 | 0.000 | 0.000 | 0.000 | 65.101 |
|  |  | 14:DL + LL4 | -215.627 | 3.825 | 0.000 | 0.000 | 0.000 | 89.671 |
|  |  | 15:DL + LL5 | -235.268 | 0.514 | 0.000 | 0.000 | 0.000 | 114.936 |
|  |  | 16:DL + LL6 | -218.580 | -0.324 | 0.000 | 0.000 | 0.000 | 39.835 |
|  |  | 17:DL + LL7 | -250.037 | -0.325 | 0.000 | 0.000 | 0.000 | 89.308 |
| 17 | 17 | 1:DEAD LOAD | 185.409 | -1.316 | 0.000 | 0.000 | 0.000 | -65.464 |
|  |  | 11:DL + LL1 | 201.507 | 0.489 | 0.000 | 0.000 | 0.000 | -90.730 |
|  |  | 12:DL + LL2 | 210.698 | -3.545 | 0.000 | 0.000 | 0.000 | -64.042 |
|  |  | 13:DL + LL3 | 216.014 | 1.467 | 0.000 | 0.000 | 0.000 | -65.101 |
|  |  | 14:DL + LL4 | 196.191 | -4.524 | 0.000 | 0.000 | 0.000 | -89.671 |
|  |  | 15:DL + LL5 | 212.289 | -2.719 | 0.000 | 0.000 | 0.000 | -114.936 |
|  |  | 16:DL + LL6 | 199.916 | -0.337 | 0.000 | 0.000 | 0.000 | -39.835 |
|  |  | 17:DL + LL7 | 226.796 | -1.741 | 0.000 | 0.000 | 0.000 | -89.308 |
|  | 18 | 1:DEAD LOAD | -185.176 | 3.654 | 0.000 | 0.000 | 0.000 | 57.973 |
|  |  | 11:DL + LL1 | -201.274 | 1.850 | 0.000 | 0.000 | 0.000 | 88.678 |
|  |  | 12:DL + LL2 | -210.465 | 5.884 | 0.000 | 0.000 | 0.000 | 49.828 |
|  |  | 13:DL + LL3 | -215.781 | 0.871 | 0.000 | 0.000 | 0.000 | 65.999 |
|  |  | 14:DL + LL4 | -195.958 | 6.862 | 0.000 | 0.000 | 0.000 | 72.507 |
|  |  | 15:DL + LL5 | -212.056 | 5.058 | 0.000 | 0.000 | 0.000 | 103.212 |
|  |  | 16:DL + LL6 | -199.683 | 2.676 | 0.000 | 0.000 | 0.000 | 35.294 |
|  |  | 17:DL + LL7 | -226.563 | 4.080 | 0.000 | 0.000 | 0.000 | 80.534 |
| 18 | 18 | 1:DEAD LOAD | 185.205 | 1.555 | 0.000 | 0.000 | 0.000 | -57.973 |



Beam End Forces Cont...

|  |  |  | Axial | Shear |  | Torsion | Bending |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Beam | Node | L/C | $\begin{gathered} \hline \text { Fx } \\ \text { (kip) } \\ \hline \end{gathered}$ | $\begin{gathered} \text { Fy } \\ \text { (kip) } \end{gathered}$ | $\begin{gathered} \hline \text { Fz } \\ \text { (kip) } \end{gathered}$ | $\begin{gathered} \mathrm{Mx} \\ \left(\mathrm{kip}^{-\mathrm{ft}}\right) \end{gathered}$ | $\begin{gathered} \mathrm{My} \\ \text { (kipft) }^{2} \end{gathered}$ | $\begin{gathered} \mathrm{Mz} \\ \text { (kip }^{-\mathrm{ft}} \text { ) } \end{gathered}$ |
|  |  | 11:DL + LL1 | 201.246 | 3.811 | 0.000 | 0.000 | 0.000 | -88.678 |
|  |  | 12:DL + LL2 | 210.547 | 0.037 | 0.000 | 0.000 | 0.000 | -49.828 |
|  |  | 13:DL + LL3 | 215.720 | 5.197 | 0.000 | 0.000 | 0.000 | -65.999 |
|  |  | 14:DL + LL4 | 196.074 | -1.349 | 0.000 | 0.000 | 0.000 | -72.507 |
|  |  | 15:DL + LL5 | 212.115 | 0.907 | 0.000 | 0.000 | 0.000 | -103.212 |
|  |  | 16:DL + LL6 | 199.679 | 2.941 | 0.000 | 0.000 | 0.000 | -35.294 |
|  |  | 17:DL + LL7 | 226.588 | 2.293 | 0.000 | 0.000 | 0.000 | -80.534 |
|  | 19 | 1:DEAD LOAD | -185.038 | 0.784 | 0.000 | 0.000 | 0.000 | 59.132 |
|  |  | 11:DL + LL1 | -201.079 | -1.473 | 0.000 | 0.000 | 0.000 | 96.623 |
|  |  | 12:DL + LL2 | -210.381 | 2.301 | 0.000 | 0.000 | 0.000 | 46.424 |
|  |  | 13:DL + LL3 | -215.553 | -2.859 | 0.000 | 0.000 | 0.000 | 78.113 |
|  |  | 14:DL + LL4 | -195.907 | 3.687 | 0.000 | 0.000 | 0.000 | 64.934 |
|  |  | 15:DL + LL5 | -211.948 | 1.431 | 0.000 | 0.000 | 0.000 | 102.425 |
|  |  | 16:DL + LL6 | -199.512 | -0.602 | 0.000 | 0.000 | 0.000 | 40.622 |
|  |  | 17:DL + LL7 | -226.422 | 0.045 | 0.000 | 0.000 | 0.000 | 83.915 |
| 19 | 19 | 1:DEAD LOAD | 165.942 | 0.246 | 0.000 | 0.000 | 0.000 | -59.132 |
|  |  | 11:DL + LL1 | 178.281 | 0.744 | 0.000 | 0.000 | 0.000 | -96.623 |
|  |  | 12:DL + LL2 | 190.042 | -0.695 | 0.000 | 0.000 | 0.000 | -46.424 |
|  |  | 13:DL + LL3 | 191.558 | 2.374 | 0.000 | 0.000 | 0.000 | -78.113 |
|  |  | 14:DL + LL4 | 176.765 | -2.325 | 0.000 | 0.000 | 0.000 | -64.934 |
|  |  | 15:DL + LL5 | 189.104 | -1.827 | 0.000 | 0.000 | 0.000 | -102.425 |
|  |  | 16:DL + LL6 | 179.219 | 1.877 | 0.000 | 0.000 | 0.000 | -40.622 |
|  |  | 17:DL + LL7 | 202.381 | -0.197 | 0.000 | 0.000 | 0.000 | -83.915 |
|  | 20 | 1:DEAD LOAD | -165.843 | 2.092 | 0.000 | 0.000 | 0.000 | 56.361 |
|  |  | 11:DL + LL1 | -178.182 | 1.595 | 0.000 | 0.000 | 0.000 | 95.345 |
|  |  | 12:DL + LL2 | -189.943 | 3.033 | 0.000 | 0.000 | 0.000 | 40.827 |
|  |  | 13:DL + LL3 | -191.459 | -0.035 | 0.000 | 0.000 | 0.000 | 81.730 |
|  |  | 14:DL + LL4 | -176.666 | 4.663 | 0.000 | 0.000 | 0.000 | 54.443 |
|  |  | 15:DL + LL5 | -189.005 | 4.166 | 0.000 | 0.000 | 0.000 | 93.427 |
|  |  | 16:DL + LL6 | -179.120 | 0.462 | 0.000 | 0.000 | 0.000 | 42.746 |
|  |  | 17:DL + LL7 | -202.282 | 2.536 | 0.000 | 0.000 | 0.000 | 79.811 |
| 20 | 20 | 1:DEAD LOAD | 165.836 | 2.548 | 0.000 | 0.000 | 0.000 | -56.361 |
|  |  | 11:DL + LL1 | 178.157 | 3.390 | 0.000 | 0.000 | 0.000 | -95.345 |
|  |  | 12:DL + LL2 | 189.953 | 2.281 | 0.000 | 0.000 | 0.000 | -40.827 |
|  |  | 13:DL + LL3 | 191.383 | 5.391 | 0.000 | 0.000 | 0.000 | -81.730 |
|  |  | 14:DL + LL4 | 176.727 | 0.280 | 0.000 | 0.000 | 0.000 | -54.443 |
|  |  | 15:DL + LL5 | 189.047 | 1.122 | 0.000 | 0.000 | 0.000 | -93.427 |
|  |  | 16:DL + LL6 | 179.063 | 4.548 | 0.000 | 0.000 | 0.000 | -42.746 |
|  |  | 17:DL + LL7 | 202.274 | 3.123 | 0.000 | 0.000 | 0.000 | -79.811 |
|  | 21 | 1:DEAD LOAD | -165.803 | -0.209 | 0.000 | 0.000 | 0.000 | 60.496 |
|  |  | 11:DL + LL1 | -178.123 | -1.051 | 0.000 | 0.000 | 0.000 | 102.007 |
|  |  | 12:DL + LL2 | -189.920 | 0.057 | 0.000 | 0.000 | 0.000 | 44.163 |
|  |  | 13:DL + LL3 | -191.350 | -3.052 | 0.000 | 0.000 | 0.000 | 94.396 |
|  |  | 14:DL + LL4 | -176.693 | 2.058 | 0.000 | 0.000 | 0.000 | 51.775 |



## Beam End Forces Cont...

|  |  | Axial | Shear |  | Torsion |  | Bending |  |
| :--- | :---: | :---: | :---: | ---: | ---: | ---: | ---: | ---: |
| Beam | Node | L/C | Fx <br> (kip) | Fy <br> (kip) | Fz <br> (kip) | $\mathbf{M x}$ <br> (kipft) | My <br> (kipft) | Mz <br> (kipft) |
|  |  | $15: D L+$ LL5 | -189.014 | 1.216 | 0.000 | 0.000 | 0.000 | 93.286 |
|  |  | 16:DL +L6 | -179.029 | -2.210 | 0.000 | 0.000 | 0.000 | 52.884 |
|  |  | $17: D L+$ LL7 | -202.240 | -0.785 | 0.000 | 0.000 | 0.000 | 85.674 |



## Job Information

|  | Engineer | Checked | Approved |
| :--- | :---: | :---: | :---: |
| Name: | DWC | SFH |  |
| Date: | 02 -Aug-18 | $03-A u g-18$ |  |


| Project ID |  |
| :--- | :--- |
| Project Name |  |

Comments
ARCH RIBS - H5 TRUCK

| Structure Type |
| :--- |
| SPACE FRAME    <br> Number of Nodes 54 Highest Node 62 <br> Number of Elements 65 Highest Beam 81 |


| Number of Basic Load Cases | -2 |
| :--- | ---: |
| Number of Combination Load Cases | 0 |

Included in this printout are data for:

| Beams | 1 to 4 |
| :--- | :--- |

Included in this printout are results for load cases:

| Type | L/C | Name |
| :---: | :---: | :---: |
| Generation | 1 | LOAD GENERATION, LOAD \#1, (1 of 21) |
| Generation | 2 | LOAD GENERATION, LOAD \#2, (2 of 21) |
| Generation | 3 | LOAD GENERATION, LOAD \#3, (3 of 21) |
| Generation | 4 | LOAD GENERATION, LOAD \#4, (4 of 21) |
| Generation | 5 | LOAD GENERATION, LOAD \#5, (5 of 21) |
| Generation | 6 | LOAD GENERATION, LOAD \#6, (6 of 21) |
| Generation | 7 | LOAD GENERATION, LOAD \#7, (7 of 21) |
| Generation | 8 | LOAD GENERATION, LOAD \#8, (8 of 21) |
| Generation | 9 | LOAD GENERATION, LOAD \#9, (9 of 21) |
| Generation | 10 | LOAD GENERATION, LOAD \#10, (10 of $2 \cdot$ |
| Generation | 11 | LOAD GENERATION, LOAD \#11, (11 of 21 |
| Generation | 12 | LOAD GENERATION, LOAD \#12, (12 of $2 \cdot$ |
| Generation | 13 | LOAD GENERATION, LOAD \#13, (13 of 2* |
| Generation | 14 | LOAD GENERATION, LOAD \#14, (14 of 2* |
| Generation | 15 | LOAD GENERATION, LOAD \#15, (15 of $2 \cdot$ |
| Generation | 16 | LOAD GENERATION, LOAD \#16, (16 of $2 \cdot$ |
| Generation | 17 | LOAD GENERATION, LOAD \#17, (17 of 2* |
| Generation | 18 | LOAD GENERATION, LOAD \#18, (18 of 2* |
| Generation | 19 | LOAD GENERATION, LOAD \#19, (19 of $2 \cdot$ |
| Generation | 20 | LOAD GENERATION, LOAD \#20, (20 of $2 \cdot$ |
| Generation | 21 | LOAD GENERATION, LOAD \#21, (21 of 2* |
| Generation | 22 | LOAD GENERATION, LOAD \#22, (1 of 21) |



## Job Information Cont...

| Type | L/C | Name |
| :---: | :---: | :---: |
| Generation | 26 | LOAD GENERATION, LOAD \#26, (5 of 21) |
| Generation | 27 | LOAD GENERATION, LOAD \#27, (6 of 21) |
| Generation | 28 | LOAD GENERATION, LOAD \#28, (7 of 21) |
| Generation | 29 | LOAD GENERATION, LOAD \#29, (8 of 21) |
| Generation | 30 | LOAD GENERATION, LOAD \#30, (9 of 21) |
| Generation | 31 | LOAD GENERATION, LOAD \#31, (10 of $2 \cdot$ |
| Generation | 32 | LOAD GENERATION, LOAD \#32, (11 of 21 |
| Generation | 33 | LOAD GENERATION, LOAD \#33, (12 of $2 \cdot$ |
| Generation | 34 | LOAD GENERATION, LOAD \#34, (13 of 2* |
| Generation | 35 | LOAD GENERATION, LOAD \#35, (14 of $2 \cdot$ |
| Generation | 36 | LOAD GENERATION, LOAD \#36, (15 of $2 \cdot$ |
| Generation | 37 | LOAD GENERATION, LOAD \#37, (16 of $2 \cdot$ |
| Generation | 38 | LOAD GENERATION, LOAD \#38, (17 of 2* |
| Generation | 39 | LOAD GENERATION, LOAD \#39, (18 of $2 \cdot$ |
| Generation | 40 | LOAD GENERATION, LOAD \#40, (19 of $2 \cdot$ |
| Generation | 41 | LOAD GENERATION, LOAD \#41, (20 of $2 \cdot$ |
| Generation | 42 | LOAD GENERATION, LOAD \#42, (21 of 2* |

## Beam End Forces

Sign convention is as the action of the joint on the beam

|  |  |  | Axial | Shear |  | Torsion | Bending |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Beam | Node | L/C | $\begin{gathered} \hline \text { Fx } \\ \text { (kip) } \end{gathered}$ | $\begin{gathered} \text { Fy } \\ \text { (kip) } \end{gathered}$ | $\begin{gathered} \hline \text { Fz } \\ \text { (kip) } \end{gathered}$ | $\begin{gathered} M x \\ (\text { kip } \mathrm{ft}) \end{gathered}$ | $\begin{gathered} \text { My } \\ \text { (kip } \mathrm{ft}) \end{gathered}$ | $\begin{gathered} \mathrm{Mz} \\ (\text { kip ft) } \end{gathered}$ |
| 1 | 1 | 1:LOAD GENE | 0.881 | 0.734 | 0.000 | 0.000 | 0.000 | 7.372 |
|  |  | 2:LOAD GENE | 2.470 | 2.082 | 0.000 | 0.000 | 0.000 | 20.817 |
|  |  | 3:LOAD GENE | 4.059 | 3.430 | 0.000 | 0.000 | 0.000 | 34.265 |
|  |  | 4:LOAD GENE | 4.949 | 3.107 | 0.000 | 0.000 | 0.000 | 34.736 |
|  |  | 5:LOAD GENE | 5.664 | 2.367 | 0.000 | 0.000 | 0.000 | 31.963 |
|  |  | 6:LOAD GENE | 6.337 | 1.637 | 0.000 | 0.000 | 0.000 | 28.180 |
|  |  | 7:LOAD GENE | 6.979 | 0.920 | 0.000 | 0.000 | 0.000 | 24.149 |
|  |  | 8:LOAD GENE | 7.592 | 0.219 | 0.000 | 0.000 | 0.000 | 20.184 |
|  |  | 9:LOAD GENE | 7.955 | -0.406 | 0.000 | 0.000 | 0.000 | 11.320 |
|  |  | 10:LOAD GENI | 8.191 | -0.961 | 0.000 | 0.000 | 0.000 | 2.701 |
|  |  | 11:LOAD GENI | 8.275 | -1.425 | 0.000 | 0.000 | 0.000 | -5.307 |
|  |  | 12:LOAD GEN | 8.204 | -1.794 | 0.000 | 0.000 | 0.000 | -12.358 |
|  |  | 13:LOAD GEN | 7.975 | -2.061 | 0.000 | 0.000 | 0.000 | -18.201 |
|  |  | 14:LOAD GEN | 7.590 | -2.223 | 0.000 | 0.000 | 0.000 | -22.646 |
|  |  | 15:LOAD GEN | 7.056 | -2.278 | 0.000 | 0.000 | 0.000 | -25.515 |
|  |  | 16:LOAD GEN | 6.380 | -2.217 | 0.000 | 0.000 | 0.000 | -26.460 |
|  |  | 17:LOAD GENI | 5.597 | -2.074 | 0.000 | 0.000 | 0.000 | -26.107 |
|  |  | 18:LOAD GEN | 4.710 | -1.824 | 0.000 | 0.000 | 0.000 | -23.756 |
|  |  | 19:LOAD GEN | 3.743 | -1.470 | 0.000 | 0.000 | 0.000 | -19.395 |
|  |  | 20:LOAD GEN | 2.817 | -1.128 | 0.000 | 0.000 | 0.000 | -15.128 |
|  |  | 21:LOAD GEN | 1.953 | -0.803 | 0.000 | 0.000 | 0.000 | -11.001 |



Beam End Forces Cont...

|  |  |  | Axial | Shear |  | Torsion | Bending |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Beam | Node | L/C | $\begin{gathered} \hline \text { Fx } \\ \text { (kip) } \end{gathered}$ | $\begin{gathered} \hline \text { Fy } \\ \text { (kip) } \\ \hline \end{gathered}$ | $\begin{gathered} \hline \text { Fz } \\ \text { (kip) } \end{gathered}$ | $\begin{gathered} \mathrm{Mx} \\ \text { (kipft) } \end{gathered}$ | $\begin{gathered} \text { My } \\ \text { (kipft) } \end{gathered}$ | $\begin{gathered} \mathrm{Mz} \\ \left(\mathrm{kip}^{2} \mathrm{ft}\right) \end{gathered}$ |
|  |  | 22:LOAD GENI | 3.525 | 2.936 | 0.000 | 0.000 | 0.000 | 29.476 |
|  |  | 23:LOAD GEN | 4.458 | 2.718 | 0.000 | 0.000 | 0.000 | 30.757 |
|  |  | 24:LOAD GEN | 5.392 | 2.499 | 0.000 | 0.000 | 0.000 | 32.040 |
|  |  | 25:LOAD GENI | 6.151 | 1.863 | 0.000 | 0.000 | 0.000 | 30.078 |
|  |  | 26:LOAD GEN | 6.866 | 1.122 | 0.000 | 0.000 | 0.000 | 27.305 |
|  |  | 27:LOAD GENI | 7.410 | 0.424 | 0.000 | 0.000 | 0.000 | 20.491 |
|  |  | 28:LOAD GENI | 7.834 | -0.222 | 0.000 | 0.000 | 0.000 | 12.684 |
|  |  | 29:LOAD GENI | 8.140 | -0.801 | 0.000 | 0.000 | 0.000 | 5.141 |
|  |  | 30:LOAD GENI | 8.269 | -1.292 | 0.000 | 0.000 | 0.000 | -3.060 |
|  |  | 31:LOAD GENI | 8.245 | -1.691 | 0.000 | 0.000 | 0.000 | -10.393 |
|  |  | 32:LOAD GENI | 8.062 | -1.988 | 0.000 | 0.000 | 0.000 | -16.588 |
|  |  | 33:LOAD GENI | 7.723 | -2.181 | 0.000 | 0.000 | 0.000 | -21.450 |
|  |  | 34:LOAD GENI | 7.234 | -2.272 | 0.000 | 0.000 | 0.000 | -24.855 |
|  |  | 35:LOAD GENI | 6.604 | -2.260 | 0.000 | 0.000 | 0.000 | -26.697 |
|  |  | 36:LOAD GENI | 5.847 | -2.139 | 0.000 | 0.000 | 0.000 | -26.682 |
|  |  | 37:LOAD GENI | 4.953 | -1.858 | 0.000 | 0.000 | 0.000 | -23.647 |
|  |  | 38:LOAD GEN | 4.032 | -1.558 | 0.000 | 0.000 | 0.000 | -20.288 |
|  |  | 39:LOAD GENI | 3.085 | -1.230 | 0.000 | 0.000 | 0.000 | -16.429 |
|  |  | 40:LOAD GENI | 2.118 | -0.877 | 0.000 | 0.000 | 0.000 | -12.068 |
|  |  | 41:LOAD GEN | 1.316 | -0.568 | 0.000 | 0.000 | 0.000 | -8.083 |
|  |  | 42:LOAD GENI | 0.760 | -0.328 | 0.000 | 0.000 | 0.000 | -4.662 |
|  | 2 | 1:LOAD GENE | -0.881 | -0.734 | 0.000 | 0.000 | 0.000 | -4.962 |
|  |  | 2:LOAD GENE | -2.470 | -2.082 | 0.000 | 0.000 | 0.000 | -13.986 |
|  |  | 3:LOAD GENE | -4.059 | -3.430 | 0.000 | 0.000 | 0.000 | -23.011 |
|  |  | 4:LOAD GENE | -4.949 | -3.107 | 0.000 | 0.000 | 0.000 | -24.542 |
|  |  | 5:LOAD GENE | -5.664 | -2.367 | 0.000 | 0.000 | 0.000 | -24.199 |
|  |  | 6:LOAD GENE | -6.337 | -1.637 | 0.000 | 0.000 | 0.000 | -22.811 |
|  |  | 7:LOAD GENE | -6.979 | -0.920 | 0.000 | 0.000 | 0.000 | -21.132 |
|  |  | 8:LOAD GENE | -7.592 | -0.219 | 0.000 | 0.000 | 0.000 | -19.464 |
|  |  | 9:LOAD GENE | -7.955 | 0.406 | 0.000 | 0.000 | 0.000 | -12.652 |
|  |  | 10:LOAD GENI | -8.191 | 0.961 | 0.000 | 0.000 | 0.000 | -5.853 |
|  |  | 11:LOAD GENI | -8.275 | 1.425 | 0.000 | 0.000 | 0.000 | 0.631 |
|  |  | 12:LOAD GENI | -8.204 | 1.794 | 0.000 | 0.000 | 0.000 | 6.473 |
|  |  | 13:LOAD GENI | -7.975 | 2.061 | 0.000 | 0.000 | 0.000 | 11.440 |
|  |  | 14:LOAD GEN | -7.590 | 2.223 | 0.000 | 0.000 | 0.000 | 15.353 |
|  |  | 15:LOAD GEN | -7.056 | 2.278 | 0.000 | 0.000 | 0.000 | 18.040 |
|  |  | 16:LOAD GENI | -6.380 | 2.217 | 0.000 | 0.000 | 0.000 | 19.188 |
|  |  | 17:LOAD GENI | -5.597 | 2.074 | 0.000 | 0.000 | 0.000 | 19.301 |
|  |  | 18:LOAD GEN | -4.710 | 1.824 | 0.000 | 0.000 | 0.000 | 17.772 |
|  |  | 19:LOAD GENI | -3.743 | 1.470 | 0.000 | 0.000 | 0.000 | 14.571 |
|  |  | 20:LOAD GEN | -2.817 | 1.128 | 0.000 | 0.000 | 0.000 | 11.426 |
|  |  | 21:LOAD GEN 1 | -1.953 | 0.803 | 0.000 | 0.000 | 0.000 | 8.366 |
|  |  | 22:LOAD GEN $\mid$ | -3.525 | -2.936 | 0.000 | 0.000 | 0.000 | -19.842 |
|  |  | 23:LOAD GEN | -4.458 | -2.718 | 0.000 | 0.000 | 0.000 | -21.841 |



Beam End Forces Cont...

|  |  |  | Axial | Shear |  | Torsion | Bending |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Beam | Node | L/C | $\begin{gathered} \hline \text { Fx } \\ \text { (kip) } \end{gathered}$ | $\begin{gathered} \hline \text { Fy } \\ \text { (kip) } \\ \hline \end{gathered}$ | $\begin{gathered} \hline \text { Fz } \\ \text { (kip) } \end{gathered}$ | $\begin{gathered} \mathrm{Mx} \\ \text { (kipft) } \end{gathered}$ | $\begin{gathered} \text { My } \\ \text { (kipft) } \end{gathered}$ | $\begin{gathered} \mathrm{Mz} \\ \left(\mathrm{kip}^{2} \mathrm{ft}\right) \end{gathered}$ |
|  |  | 24:LOAD GENI | -5.392 | -2.499 | 0.000 | 0.000 | 0.000 | -23.840 |
|  |  | 25:LOAD GENI | -6.151 | -1.863 | 0.000 | 0.000 | 0.000 | -23.966 |
|  |  | 26:LOAD GEN | -6.866 | -1.122 | 0.000 | 0.000 | 0.000 | -23.623 |
|  |  | 27:LOAD GENI | -7.410 | -0.424 | 0.000 | 0.000 | 0.000 | -19.099 |
|  |  | 28:LOAD GEN | -7.834 | 0.222 | 0.000 | 0.000 | 0.000 | -13.411 |
|  |  | 29:LOAD GENI | -8.140 | 0.801 | 0.000 | 0.000 | 0.000 | -7.768 |
|  |  | 30:LOAD GENI | -8.269 | 1.292 | 0.000 | 0.000 | 0.000 | -1.179 |
|  |  | 31:LOAD GENI | -8.245 | 1.691 | 0.000 | 0.000 | 0.000 | 4.846 |
|  |  | 32:LOAD GENI | -8.062 | 1.988 | 0.000 | 0.000 | 0.000 | 10.068 |
|  |  | 33:LOAD GENI | -7.723 | 2.181 | 0.000 | 0.000 | 0.000 | 14.294 |
|  |  | 34:LOAD GENI | -7.234 | 2.272 | 0.000 | 0.000 | 0.000 | 17.401 |
|  |  | 35:LOAD GEN 1 | -6.604 | 2.260 | 0.000 | 0.000 | 0.000 | 19.283 |
|  |  | 36:LOAD GENI | -5.847 | 2.139 | 0.000 | 0.000 | 0.000 | 19.664 |
|  |  | 37:LOAD GENI | -4.953 | 1.858 | 0.000 | 0.000 | 0.000 | 17.550 |
|  |  | 38:LOAD GENI | -4.032 | 1.558 | 0.000 | 0.000 | 0.000 | 15.177 |
|  |  | 39:LOAD GENI | -3.085 | 1.230 | 0.000 | 0.000 | 0.000 | 12.393 |
|  |  | 40:LOAD GEN | -2.118 | 0.877 | 0.000 | 0.000 | 0.000 | 9.192 |
|  |  | 41:LOAD GENI | -1.316 | 0.568 | 0.000 | 0.000 | 0.000 | 6.218 |
|  |  | 42:LOAD GENI | -0.760 | 0.328 | 0.000 | 0.000 | 0.000 | 3.585 |
| 2 | 2 | 1:LOAD GENE | 0.859 | 0.761 | 0.000 | 0.000 | 0.000 | 4.962 |
|  |  | 2:LOAD GENE | 2.405 | 2.157 | 0.000 | 0.000 | 0.000 | 13.986 |
|  |  | 3:LOAD GENE | 3.952 | 3.554 | 0.000 | 0.000 | 0.000 | 23.011 |
|  |  | 4:LOAD GENE | 4.851 | 3.258 | 0.000 | 0.000 | 0.000 | 24.542 |
|  |  | 5:LOAD GENE | 5.589 | 2.540 | 0.000 | 0.000 | 0.000 | 24.199 |
|  |  | 6:LOAD GENE | 6.283 | 1.831 | 0.000 | 0.000 | 0.000 | 22.811 |
|  |  | 7:LOAD GENE | 6.947 | 1.134 | 0.000 | 0.000 | 0.000 | 21.132 |
|  |  | 8:LOAD GENE | 7.581 | 0.453 | 0.000 | 0.000 | 0.000 | 19.464 |
|  |  | 9:LOAD GENE | 7.963 | -0.161 | 0.000 | 0.000 | 0.000 | 12.652 |
|  |  | 10:LOAD GENI | 8.217 | -0.708 | 0.000 | 0.000 | 0.000 | 5.853 |
|  |  | 11:LOAD GENI | 8.315 | -1.170 | 0.000 | 0.000 | 0.000 | -0.631 |
|  |  | 12:LOAD GENI | 8.255 | -1.541 | 0.000 | 0.000 | 0.000 | -6.473 |
|  |  | 13:LOAD GEN | 8.035 | -1.815 | 0.000 | 0.000 | 0.000 | -11.440 |
|  |  | 14:LOAD GEN | 7.655 | -1.989 | 0.000 | 0.000 | 0.000 | -15.353 |
|  |  | 15:LOAD GENI | 7.123 | -2.060 | 0.000 | 0.000 | 0.000 | -18.040 |
|  |  | 16:LOAD GENI | 6.445 | -2.019 | 0.000 | 0.000 | 0.000 | -19.188 |
|  |  | 17:LOAD GEN | 5.658 | -1.901 | 0.000 | 0.000 | 0.000 | -19.301 |
|  |  | 18:LOAD GENI | 4.763 | -1.678 | 0.000 | 0.000 | 0.000 | -17.772 |
|  |  | 19:LOAD GENI | 3.786 | -1.355 | 0.000 | 0.000 | 0.000 | -14.571 |
|  |  | 20:LOAD GENI | 2.850 | -1.041 | 0.000 | 0.000 | 0.000 | -11.426 |
|  |  | 21:LOAD GENI | 1.976 | -0.743 | 0.000 | 0.000 | 0.000 | -8.366 |
|  |  | 22:LOAD GEN | 3.433 | 3.043 | 0.000 | 0.000 | 0.000 | 19.842 |
|  |  | 23:LOAD GEN 1 | 4.373 | 2.854 | 0.000 | 0.000 | 0.000 | 21.841 |
|  |  | 24:LOAD GEN $\mid$ | 5.312 | 2.664 | 0.000 | 0.000 | 0.000 | 23.840 |
|  |  | 25:LOAD GEN | 6.090 | 2.051 | 0.000 | 0.000 | 0.000 | 23.966 |



Beam End Forces Cont...

|  |  |  | Axial | Shear |  | Torsion | Bending |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Beam | Node | L/C | $\begin{gathered} \hline \text { Fx } \\ \text { (kip) } \end{gathered}$ | $\begin{gathered} \text { Fy } \\ \text { (kip) } \end{gathered}$ | $\begin{gathered} \hline \text { Fz } \\ \text { (kip) } \end{gathered}$ | $\begin{gathered} \mathrm{Mx} \\ \text { (kip-ft) } \end{gathered}$ | $\begin{gathered} \text { My } \\ (\text { kip ft) } \end{gathered}$ | $\begin{gathered} \mathbf{M z} \\ \left(\text { kip }^{2} \mathrm{ft}\right) \end{gathered}$ |
|  |  | 26:LOAD GENI | 6.828 | 1.333 | 0.000 | 0.000 | 0.000 | 23.623 |
|  |  | 27:LOAD GEN | 7.393 | 0.652 | 0.000 | 0.000 | 0.000 | 19.099 |
|  |  | 28:LOAD GEN | 7.837 | 0.019 | 0.000 | 0.000 | 0.000 | 13.411 |
|  |  | 29:LOAD GEN | 8.161 | -0.550 | 0.000 | 0.000 | 0.000 | 7.768 |
|  |  | 30:LOAD GENI | 8.305 | -1.037 | 0.000 | 0.000 | 0.000 | 1.179 |
|  |  | 31:LOAD GEN | 8.293 | -1.436 | 0.000 | 0.000 | 0.000 | -4.846 |
|  |  | 32:LOAD GEN | 8.120 | -1.739 | 0.000 | 0.000 | 0.000 | -10.068 |
|  |  | 33:LOAD GEN 1 | 7.786 | -1.943 | 0.000 | 0.000 | 0.000 | -14.294 |
|  |  | 34:LOAD GEN | 7.301 | -2.048 | 0.000 | 0.000 | 0.000 | -17.401 |
|  |  | 35:LOAD GEN | 6.671 | -2.056 | 0.000 | 0.000 | 0.000 | -19.283 |
|  |  | 36:LOAD GEN | 5.910 | -1.958 | 0.000 | 0.000 | 0.000 | -19.664 |
|  |  | 37:LOAD GEN 1 | 5.008 | -1.705 | 0.000 | 0.000 | 0.000 | -17.550 |
|  |  | 38:LOAD GENI | 4.078 | -1.433 | 0.000 | 0.000 | 0.000 | -15.177 |
|  |  | 39:LOAD GEN | 3.121 | -1.135 | 0.000 | 0.000 | 0.000 | -12.393 |
|  |  | 40:LOAD GEN | 2.144 | -0.811 | 0.000 | 0.000 | 0.000 | -9.192 |
|  |  | 41:LOAD GEN | 1.332 | -0.528 | 0.000 | 0.000 | 0.000 | -6.218 |
|  |  | 42:LOAD GEN | 0.770 | -0.305 | 0.000 | 0.000 | 0.000 | -3.585 |
|  | 3 | 1:LOAD GENE | -0.859 | -0.761 | 0.000 | 0.000 | 0.000 | -2.513 |
|  |  | 2:LOAD GENE | -2.405 | -2.157 | 0.000 | 0.000 | 0.000 | -7.044 |
|  |  | 3:LOAD GENE | -3.952 | -3.554 | 0.000 | 0.000 | 0.000 | -11.576 |
|  |  | 4:LOAD GENE | -4.851 | -3.258 | 0.000 | 0.000 | 0.000 | -14.058 |
|  |  | 5:LOAD GENE | -5.589 | -2.540 | 0.000 | 0.000 | 0.000 | -16.027 |
|  |  | 6:LOAD GENE | -6.283 | -1.831 | 0.000 | 0.000 | 0.000 | -16.920 |
|  |  | 7:LOAD GENE | -6.947 | -1.134 | 0.000 | 0.000 | 0.000 | -17.484 |
|  |  | 8:LOAD GENE | -7.581 | -0.453 | 0.000 | 0.000 | 0.000 | -18.008 |
|  |  | 9:LOAD GENE | -7.963 | 0.161 | 0.000 | 0.000 | 0.000 | -13.172 |
|  |  | 10:LOAD GEN | -8.217 | 0.708 | 0.000 | 0.000 | 0.000 | -8.132 |
|  |  | 11:LOAD GENI | -8.315 | 1.170 | 0.000 | 0.000 | 0.000 | -3.136 |
|  |  | 12:LOAD GEN | -8.255 | 1.541 | 0.000 | 0.000 | 0.000 | 1.515 |
|  |  | 13:LOAD GEN ${ }^{\text {I }}$ | -8.035 | 1.815 | 0.000 | 0.000 | 0.000 | 5.600 |
|  |  | 14:LOAD GEN | -7.655 | 1.989 | 0.000 | 0.000 | 0.000 | 8.954 |
|  |  | 15:LOAD GEN | -7.123 | 2.060 | 0.000 | 0.000 | 0.000 | 11.410 |
|  |  | 16:LOAD GEN | -6.445 | 2.019 | 0.000 | 0.000 | 0.000 | 12.689 |
|  |  | 17:LOAD GENI | -5.658 | 1.901 | 0.000 | 0.000 | 0.000 | 13.183 |
|  |  | 18:LOAD GEN | -4.763 | 1.678 | 0.000 | 0.000 | 0.000 | 12.372 |
|  |  | 19:LOAD GEN | -3.786 | 1.355 | 0.000 | 0.000 | 0.000 | 10.211 |
|  |  | 20:LOAD GEN | -2.850 | 1.041 | 0.000 | 0.000 | 0.000 | 8.075 |
|  |  | 21:LOAD GENI | -1.976 | 0.743 | 0.000 | 0.000 | 0.000 | 5.976 |
|  |  | 22:LOAD GEN | -3.433 | -3.043 | 0.000 | 0.000 | 0.000 | -10.049 |
|  |  | 23:LOAD GENI | -4.373 | -2.854 | 0.000 | 0.000 | 0.000 | -12.659 |
|  |  | 24:LOAD GEN | -5.312 | -2.664 | 0.000 | 0.000 | 0.000 | -15.269 |
|  |  | 25:LOAD GEN | -6.090 | -2.051 | 0.000 | 0.000 | 0.000 | -17.366 |
|  |  | 26:LOAD GENI | -6.828 | -1.333 | 0.000 | 0.000 | 0.000 | -19.335 |
|  |  | 27:LOAD GEN | -7.393 | -0.652 | 0.000 | 0.000 | 0.000 | -17.001 |



Beam End Forces Cont...

|  |  |  | Axial | Shear |  | Torsion | Bending |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Beam | Node | L/C | $\begin{gathered} \hline \text { Fx } \\ \text { (kip) } \end{gathered}$ | $\begin{gathered} \hline \text { Fy } \\ \text { (kip) } \\ \hline \end{gathered}$ | $\begin{gathered} \hline \text { Fz } \\ \text { (kip) } \end{gathered}$ | $\begin{gathered} \mathrm{Mx} \\ \text { (kipft) } \end{gathered}$ | $\begin{gathered} \mathrm{My} \\ (\mathrm{kip} \mathrm{ft}) \end{gathered}$ | $\begin{gathered} \mathrm{Mz} \\ \left(\mathrm{kip}^{2} \mathrm{ft}\right) \end{gathered}$ |
|  |  | 28:LOAD GEN | -7.837 | -0.019 | 0.000 | 0.000 | 0.000 | -13.349 |
|  |  | 29:LOAD GENI | -8.161 | 0.550 | 0.000 | 0.000 | 0.000 | -9.538 |
|  |  | 30:LOAD GEN | -8.305 | 1.037 | 0.000 | 0.000 | 0.000 | -4.517 |
|  |  | 31:LOAD GEN | -8.293 | 1.436 | 0.000 | 0.000 | 0.000 | 0.225 |
|  |  | 32:LOAD GEN | -8.120 | 1.739 | 0.000 | 0.000 | 0.000 | 4.473 |
|  |  | 33:LOAD GEN | -7.786 | 1.943 | 0.000 | 0.000 | 0.000 | 8.043 |
|  |  | 34:LOAD GEN 1 | -7.301 | 2.048 | 0.000 | 0.000 | 0.000 | 10.810 |
|  |  | 35:LOAD GEN | -6.671 | 2.056 | 0.000 | 0.000 | 0.000 | 12.667 |
|  |  | 36:LOAD GEN | -5.910 | 1.958 | 0.000 | 0.000 | 0.000 | 13.363 |
|  |  | 37:LOAD GEN | -5.008 | 1.705 | 0.000 | 0.000 | 0.000 | 12.062 |
|  |  | 38:LOAD GENI | -4.078 | 1.433 | 0.000 | 0.000 | 0.000 | 10.565 |
|  |  | 39:LOAD GEN | -3.121 | 1.135 | 0.000 | 0.000 | 0.000 | 8.742 |
|  |  | 40:LOAD GEN | -2.144 | 0.811 | 0.000 | 0.000 | 0.000 | 6.581 |
|  |  | 41:LOAD GEN | -1.332 | 0.528 | 0.000 | 0.000 | 0.000 | 4.519 |
|  |  | 42:LOAD GENI | -0.770 | 0.305 | 0.000 | 0.000 | 0.000 | 2.605 |
| 3 | 3 | 1:LOAD GENE | 0.835 | 0.787 | 0.000 | 0.000 | 0.000 | 2.513 |
|  |  | 2:LOAD GENE | 2.339 | 2.229 | 0.000 | 0.000 | 0.000 | 7.044 |
|  |  | 3:LOAD GENE | 3.843 | 3.672 | 0.000 | 0.000 | 0.000 | 11.576 |
|  |  | 4:LOAD GENE | 4.751 | 3.403 | 0.000 | 0.000 | 0.000 | 14.058 |
|  |  | 5:LOAD GENE | 5.509 | 2.708 | 0.000 | 0.000 | 0.000 | 16.027 |
|  |  | 6:LOAD GENE | 6.225 | 2.020 | 0.000 | 0.000 | 0.000 | 16.920 |
|  |  | 7:LOAD GENE | 6.910 | 1.343 | 0.000 | 0.000 | 0.000 | 17.484 |
|  |  | 8:LOAD GENE | 7.564 | 0.682 | 0.000 | 0.000 | 0.000 | 18.008 |
|  |  | 9:LOAD GENE | 7.965 | 0.080 | 0.000 | 0.000 | 0.000 | 13.172 |
|  |  | 10:LOAD GENI | 8.234 | -0.459 | 0.000 | 0.000 | 0.000 | 8.132 |
|  |  | 11:LOAD GENI | 8.347 | -0.918 | 0.000 | 0.000 | 0.000 | 3.136 |
|  |  | 12:LOAD GEN | 8.298 | -1.290 | 0.000 | 0.000 | 0.000 | -1.515 |
|  |  | 13:LOAD GEN | 8.086 | -1.571 | 0.000 | 0.000 | 0.000 | -5.600 |
|  |  | 14:LOAD GEN | 7.711 | -1.756 | 0.000 | 0.000 | 0.000 | -8.954 |
|  |  | 15:LOAD GEN | 7.182 | -1.844 | 0.000 | 0.000 | 0.000 | -11.410 |
|  |  | 16:LOAD GEN | 6.503 | -1.823 | 0.000 | 0.000 | 0.000 | -12.689 |
|  |  | 17:LOAD GEN | 5.713 | -1.729 | 0.000 | 0.000 | 0.000 | -13.183 |
|  |  | 18:LOAD GEN | 4.812 | -1.533 | 0.000 | 0.000 | 0.000 | -12.372 |
|  |  | 19:LOAD GENI | 3.825 | -1.239 | 0.000 | 0.000 | 0.000 | -10.211 |
|  |  | 20:LOAD GEN | 2.880 | -0.954 | 0.000 | 0.000 | 0.000 | -8.075 |
|  |  | 21:LOAD GEN | 1.998 | -0.683 | 0.000 | 0.000 | 0.000 | -5.976 |
|  |  | 22:LOAD GENI | 3.339 | 3.146 | 0.000 | 0.000 | 0.000 | 10.049 |
|  |  | 23:LOAD GEN | 4.284 | 2.985 | 0.000 | 0.000 | 0.000 | 12.659 |
|  |  | 24:LOAD GEN | 5.229 | 2.823 | 0.000 | 0.000 | 0.000 | 15.269 |
|  |  | 25:LOAD GEN | 6.025 | 2.235 | 0.000 | 0.000 | 0.000 | 17.366 |
|  |  | 26:LOAD GEN | 6.784 | 1.539 | 0.000 | 0.000 | 0.000 | 19.335 |
|  |  | 27:LOAD GEN | 7.370 | 0.875 | 0.000 | 0.000 | 0.000 | 17.001 |
|  |  | 28:LOAD GEN ${ }^{\text {I }}$ | 7.833 | 0.257 | 0.000 | 0.000 | 0.000 | 13.349 |
|  |  | 29:LOAD GEN | 8.174 | -0.303 | 0.000 | 0.000 | 0.000 | 9.538 |



Beam End Forces Cont...

|  |  |  | Axial | Shear |  | Torsion | Bending |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Beam | Node | L/C | $\begin{gathered} \hline \text { Fx } \\ \text { (kip) } \end{gathered}$ | $\begin{gathered} \text { Fy } \\ \text { (kip) } \end{gathered}$ | $\begin{gathered} \hline \text { Fz } \\ \text { (kip) } \end{gathered}$ | $\begin{gathered} \mathrm{Mx} \\ \text { (kip-ft) } \end{gathered}$ | $\begin{gathered} \text { My } \\ (\text { kip ft) } \end{gathered}$ | $\begin{gathered} \mathrm{Mz} \\ (\text { kip ft }) \end{gathered}$ |
|  |  | 30:LOAD GENI | 8.332 | -0.785 | 0.000 | 0.000 | 0.000 | 4.517 |
|  |  | 31:LOAD GEN | 8.333 | -1.185 | 0.000 | 0.000 | 0.000 | -0.225 |
|  |  | 32:LOAD GEN | 8.168 | -1.492 | 0.000 | 0.000 | 0.000 | -4.473 |
|  |  | 33:LOAD GEN 1 | 7.842 | -1.706 | 0.000 | 0.000 | 0.000 | -8.043 |
|  |  | 34:LOAD GENI | 7.359 | -1.826 | 0.000 | 0.000 | 0.000 | -10.810 |
|  |  | 35:LOAD GEN | 6.730 | -1.853 | 0.000 | 0.000 | 0.000 | -12.667 |
|  |  | 36:LOAD GEN | 5.967 | -1.778 | 0.000 | 0.000 | 0.000 | -13.363 |
|  |  | 37:LOAD GEN 1 | 5.057 | -1.553 | 0.000 | 0.000 | 0.000 | -12.062 |
|  |  | 38:LOAD GEN | 4.120 | -1.309 | 0.000 | 0.000 | 0.000 | -10.565 |
|  |  | 39:LOAD GEN | 3.154 | -1.040 | 0.000 | 0.000 | 0.000 | -8.742 |
|  |  | 40:LOAD GEN | 2.168 | -0.746 | 0.000 | 0.000 | 0.000 | -6.581 |
|  |  | 41:LOAD GEN | 1.348 | -0.487 | 0.000 | 0.000 | 0.000 | -4.519 |
|  |  | 42:LOAD GENI | 0.778 | -0.281 | 0.000 | 0.000 | 0.000 | -2.605 |
|  | 4 | 1:LOAD GENE | -0.835 | -0.787 | 0.000 | 0.000 | 0.000 | -0.026 |
|  |  | 2:LOAD GENE | -2.339 | -2.229 | 0.000 | 0.000 | 0.000 | 0.002 |
|  |  | 3:LOAD GENE | -3.843 | -3.672 | 0.000 | 0.000 | 0.000 | 0.030 |
|  |  | 4:LOAD GENE | -4.751 | -3.403 | 0.000 | 0.000 | 0.000 | -3.299 |
|  |  | 5:LOAD GENE | -5.509 | -2.708 | 0.000 | 0.000 | 0.000 | -7.467 |
|  |  | 6:LOAD GENE | -6.225 | -2.020 | 0.000 | 0.000 | 0.000 | -10.535 |
|  |  | 7:LOAD GENE | -6.910 | -1.343 | 0.000 | 0.000 | 0.000 | -13.237 |
|  |  | 8:LOAD GENE | -7.564 | -0.682 | 0.000 | 0.000 | 0.000 | -15.851 |
|  |  | 9:LOAD GENE | -7.965 | -0.080 | 0.000 | 0.000 | 0.000 | -12.919 |
|  |  | 10:LOAD GEN | -8.234 | 0.459 | 0.000 | 0.000 | 0.000 | -9.583 |
|  |  | 11:LOAD GENI | -8.347 | 0.918 | 0.000 | 0.000 | 0.000 | -6.038 |
|  |  | 12:LOAD GEN | -8.298 | 1.290 | 0.000 | 0.000 | 0.000 | -2.564 |
|  |  | 13:LOAD GEN | -8.086 | 1.571 | 0.000 | 0.000 | 0.000 | 0.635 |
|  |  | 14:LOAD GEN ${ }^{\text {I }}$ | -7.711 | 1.756 | 0.000 | 0.000 | 0.000 | 3.403 |
|  |  | 15:LOAD GEN | -7.182 | 1.844 | 0.000 | 0.000 | 0.000 | 5.582 |
|  |  | 16:LOAD GEN | -6.503 | 1.823 | 0.000 | 0.000 | 0.000 | 6.925 |
|  |  | 17:LOAD GEN ${ }^{\text {I }}$ | -5.713 | 1.729 | 0.000 | 0.000 | 0.000 | 7.717 |
|  |  | 18:LOAD GEN | -4.812 | 1.533 | 0.000 | 0.000 | 0.000 | 7.525 |
|  |  | 19:LOAD GEN | -3.825 | 1.239 | 0.000 | 0.000 | 0.000 | 6.293 |
|  |  | 20:LOAD GEN | -2.880 | 0.954 | 0.000 | 0.000 | 0.000 | 5.058 |
|  |  | 21:LOAD GENI | -1.998 | 0.683 | 0.000 | 0.000 | 0.000 | 3.819 |
|  |  | 22:LOAD GEN | -3.339 | -3.146 | 0.000 | 0.000 | 0.000 | -0.104 |
|  |  | 23:LOAD GEN | -4.284 | -2.985 | 0.000 | 0.000 | 0.000 | -3.224 |
|  |  | 24:LOAD GEN | -5.229 | -2.823 | 0.000 | 0.000 | 0.000 | -6.343 |
|  |  | 25:LOAD GENI | -6.025 | -2.235 | 0.000 | 0.000 | 0.000 | -10.302 |
|  |  | 26:LOAD GEN | -6.784 | -1.539 | 0.000 | 0.000 | 0.000 | -14.471 |
|  |  | 27:LOAD GEN | -7.370 | -0.875 | 0.000 | 0.000 | 0.000 | -14.233 |
|  |  | 28:LOAD GEN | -7.833 | -0.257 | 0.000 | 0.000 | 0.000 | -12.537 |
|  |  | 29:LOAD GENI | -8.174 | 0.303 | 0.000 | 0.000 | 0.000 | -10.495 |
|  |  | 30:LOAD GENI | -8.332 | 0.785 | 0.000 | 0.000 | 0.000 | -7.000 |
|  |  | 31:LOAD GEN | -8.333 | 1.185 | 0.000 | 0.000 | 0.000 | -3.520 |



Beam End Forces Cont...

|  |  |  | Axial | Shear |  | Torsion | Bending |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Beam | Node | L/C | $\begin{gathered} \hline \text { Fx } \\ \text { (kip) } \end{gathered}$ | $\begin{gathered} \text { Fy } \\ \text { (kip) } \end{gathered}$ | $\begin{gathered} \hline \text { Fz } \\ \text { (kip) } \end{gathered}$ | $\begin{gathered} \mathrm{Mx} \\ \text { (kip-ft) } \end{gathered}$ | $\begin{gathered} \text { My } \\ (\text { kip ft) } \end{gathered}$ | $\begin{gathered} \mathrm{Mz} \\ (\text { kip ft }) \end{gathered}$ |
|  |  | 32:LOAD GENI | -8.168 | 1.492 | 0.000 | 0.000 | 0.000 | -0.244 |
|  |  | 33:LOAD GEN | -7.842 | 1.706 | 0.000 | 0.000 | 0.000 | 2.650 |
|  |  | 34:LOAD GEN | -7.359 | 1.826 | 0.000 | 0.000 | 0.000 | 5.036 |
|  |  | 35:LOAD GEN | -6.730 | 1.853 | 0.000 | 0.000 | 0.000 | 6.809 |
|  |  | 36:LOAD GENI | -5.967 | 1.778 | 0.000 | 0.000 | 0.000 | 7.741 |
|  |  | 37:LOAD GEN | -5.057 | 1.553 | 0.000 | 0.000 | 0.000 | 7.153 |
|  |  | 38:LOAD GEN | -4.120 | 1.309 | 0.000 | 0.000 | 0.000 | 6.427 |
|  |  | 39:LOAD GEN | -3.154 | 1.040 | 0.000 | 0.000 | 0.000 | 5.455 |
|  |  | 40:LOAD GEN | -2.168 | 0.746 | 0.000 | 0.000 | 0.000 | 4.224 |
|  |  | 41:LOAD GEN | -1.348 | 0.487 | 0.000 | 0.000 | 0.000 | 2.979 |
|  |  | 42:LOAD GENI | -0.778 | 0.281 | 0.000 | 0.000 | 0.000 | 1.717 |
| 4 | 4 | 1:LOAD GENE | 0.811 | 0.811 | 0.000 | 0.000 | 0.000 | 0.026 |
|  |  | 2:LOAD GENE | 2.272 | 2.297 | 0.000 | 0.000 | 0.000 | -0.002 |
|  |  | 3:LOAD GENE | 3.732 | 3.784 | 0.000 | 0.000 | 0.000 | -0.030 |
|  |  | 4:LOAD GENE | 4.648 | 3.543 | 0.000 | 0.000 | 0.000 | 3.299 |
|  |  | 5:LOAD GENE | 5.427 | 2.870 | 0.000 | 0.000 | 0.000 | 7.467 |
|  |  | 6:LOAD GENE | 6.162 | 2.204 | 0.000 | 0.000 | 0.000 | 10.535 |
|  |  | 7:LOAD GENE | 6.867 | 1.548 | 0.000 | 0.000 | 0.000 | 13.237 |
|  |  | 8:LOAD GENE | 7.540 | 0.906 | 0.000 | 0.000 | 0.000 | 15.851 |
|  |  | 9:LOAD GENE | 7.959 | 0.316 | 0.000 | 0.000 | 0.000 | 12.919 |
|  |  | 10:LOAD GEN | 8.244 | -0.215 | 0.000 | 0.000 | 0.000 | 9.583 |
|  |  | 11:LOAD GENI | 8.370 | -0.670 | 0.000 | 0.000 | 0.000 | 6.038 |
|  |  | 12:LOAD GEN | 8.333 | -1.044 | 0.000 | 0.000 | 0.000 | 2.564 |
|  |  | 13:LOAD GENI | 8.129 | -1.330 | 0.000 | 0.000 | 0.000 | -0.635 |
|  |  | 14:LOAD GEN | 7.760 | -1.527 | 0.000 | 0.000 | 0.000 | -3.403 |
|  |  | 15:LOAD GEN ${ }^{\text {I }}$ | 7.233 | -1.630 | 0.000 | 0.000 | 0.000 | -5.582 |
|  |  | 16:LOAD GEN ${ }^{\text {I }}$ | 6.554 | -1.630 | 0.000 | 0.000 | 0.000 | -6.925 |
|  |  | 17:LOAD GEN | 5.762 | -1.559 | 0.000 | 0.000 | 0.000 | -7.717 |
|  |  | 18:LOAD GEN | 4.855 | -1.390 | 0.000 | 0.000 | 0.000 | -7.525 |
|  |  | 19:LOAD GEN | 3.860 | -1.126 | 0.000 | 0.000 | 0.000 | -6.293 |
|  |  | 20:LOAD GEN | 2.907 | -0.869 | 0.000 | 0.000 | 0.000 | -5.058 |
|  |  | 21:LOAD GEN | 2.017 | -0.623 | 0.000 | 0.000 | 0.000 | -3.819 |
|  |  | 22:LOAD GEN | 3.244 | 3.244 | 0.000 | 0.000 | 0.000 | 0.104 |
|  |  | 23:LOAD GENI | 4.194 | 3.110 | 0.000 | 0.000 | 0.000 | 3.224 |
|  |  | 24:LOAD GEN | 5.143 | 2.977 | 0.000 | 0.000 | 0.000 | 6.343 |
|  |  | 25:LOAD GEN | 5.957 | 2.412 | 0.000 | 0.000 | 0.000 | 10.302 |
|  |  | 26:LOAD GEN | 6.736 | 1.739 | 0.000 | 0.000 | 0.000 | 14.471 |
|  |  | 27:LOAD GEN | 7.341 | 1.094 | 0.000 | 0.000 | 0.000 | 14.233 |
|  |  | 28:LOAD GEN | 7.822 | 0.489 | 0.000 | 0.000 | 0.000 | 12.537 |
|  |  | 29:LOAD GENI | 8.179 | -0.060 | 0.000 | 0.000 | 0.000 | 10.495 |
|  |  | 30:LOAD GENI | 8.352 | -0.538 | 0.000 | 0.000 | 0.000 | 7.000 |
|  |  | 31:LOAD GENI | 8.365 | -0.937 | 0.000 | 0.000 | 0.000 | 3.520 |
|  |  | 32:LOAD GENI | 8.209 | -1.249 | 0.000 | 0.000 | 0.000 | 0.244 |
|  |  | 33:LOAD GEN | 7.889 | -1.473 | 0.000 | 0.000 | 0.000 | -2.650 |



Beam End Forces Cont...

|  |  |  | Axial | Shear |  | Torsion | Bending |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Beam | Node | L/C | $\begin{gathered} \hline \text { Fx } \\ \text { (kip) } \end{gathered}$ | $\begin{gathered} \hline \text { Fy } \\ \text { (kip) } \\ \hline \end{gathered}$ | $\begin{gathered} \hline \text { Fz } \\ \text { (kip) } \end{gathered}$ | $\begin{gathered} \mathrm{Mx} \\ \text { (kipft) } \end{gathered}$ | $\begin{gathered} \text { My } \\ \text { (kipft) } \end{gathered}$ | $\begin{gathered} \mathrm{Mz} \\ \left(\mathrm{kip}^{2} \mathrm{ft}\right) \end{gathered}$ |
|  |  | 34:LOAD GEN | 7.410 | -1.607 | 0.000 | 0.000 | 0.000 | -5.036 |
|  |  | 35:LOAD GENI | 6.782 | -1.653 | 0.000 | 0.000 | 0.000 | -6.809 |
|  |  | 36:LOAD GEN | 6.017 | -1.601 | 0.000 | 0.000 | 0.000 | -7.741 |
|  |  | 37:LOAD GEN | 5.101 | -1.402 | 0.000 | 0.000 | 0.000 | -7.153 |
|  |  | 38:LOAD GEN | 4.157 | -1.186 | 0.000 | 0.000 | 0.000 | -6.427 |
|  |  | 39:LOAD GENI | 3.184 | -0.946 | 0.000 | 0.000 | 0.000 | -5.455 |
|  |  | 40:LOAD GENI | 2.189 | -0.681 | 0.000 | 0.000 | 0.000 | -4.224 |
|  |  | 41:LOAD GEN | 1.362 | -0.447 | 0.000 | 0.000 | 0.000 | -2.979 |
|  |  | 42:LOAD GEN | 0.786 | -0.258 | 0.000 | 0.000 | 0.000 | -1.717 |
|  | 5 | 1:LOAD GENE | -0.811 | -0.811 | 0.000 | 0.000 | 0.000 | 2.497 |
|  |  | 2:LOAD GENE | -2.272 | -2.297 | 0.000 | 0.000 | 0.000 | 7.148 |
|  |  | 3:LOAD GENE | -3.732 | -3.784 | 0.000 | 0.000 | 0.000 | 11.799 |
|  |  | 4:LOAD GENE | -4.648 | -3.543 | 0.000 | 0.000 | 0.000 | 7.720 |
|  |  | 5:LOAD GENE | -5.427 | -2.870 | 0.000 | 0.000 | 0.000 | 1.459 |
|  |  | 6:LOAD GENE | -6.162 | -2.204 | 0.000 | 0.000 | 0.000 | -3.680 |
|  |  | 7:LOAD GENE | -6.867 | -1.548 | 0.000 | 0.000 | 0.000 | -8.423 |
|  |  | 8:LOAD GENE | -7.540 | -0.906 | 0.000 | 0.000 | 0.000 | -13.034 |
|  |  | 9:LOAD GENE | -7.959 | -0.316 | 0.000 | 0.000 | 0.000 | -11.937 |
|  |  | 10:LOAD GEN | -8.244 | 0.215 | 0.000 | 0.000 | 0.000 | -10.252 |
|  |  | 11:LOAD GENI | -8.370 | 0.670 | 0.000 | 0.000 | 0.000 | -8.123 |
|  |  | 12:LOAD GEN | -8.333 | 1.044 | 0.000 | 0.000 | 0.000 | -5.810 |
|  |  | 13:LOAD GEN | -8.129 | 1.330 | 0.000 | 0.000 | 0.000 | -3.503 |
|  |  | 14:LOAD GEN | -7.760 | 1.527 | 0.000 | 0.000 | 0.000 | -1.345 |
|  |  | 15:LOAD GEN | -7.233 | 1.630 | 0.000 | 0.000 | 0.000 | 0.512 |
|  |  | 16:LOAD GENI | -6.554 | 1.630 | 0.000 | 0.000 | 0.000 | 1.856 |
|  |  | 17:LOAD GEN | -5.762 | 1.559 | 0.000 | 0.000 | 0.000 | 2.867 |
|  |  | 18:LOAD GEN | -4.855 | 1.390 | 0.000 | 0.000 | 0.000 | 3.202 |
|  |  | 19:LOAD GEN | -3.860 | 1.126 | 0.000 | 0.000 | 0.000 | 2.792 |
|  |  | 20:LOAD GEN | -2.907 | 0.869 | 0.000 | 0.000 | 0.000 | 2.356 |
|  |  | 21:LOAD GEN | -2.017 | 0.623 | 0.000 | 0.000 | 0.000 | 1.881 |
|  |  | 22:LOAD GEN | -3.244 | -3.244 | 0.000 | 0.000 | 0.000 | 9.984 |
|  |  | 23:LOAD GEN | -4.194 | -3.110 | 0.000 | 0.000 | 0.000 | 6.450 |
|  |  | 24:LOAD GEN | -5.143 | -2.977 | 0.000 | 0.000 | 0.000 | 2.917 |
|  |  | 25:LOAD GEN | -5.957 | -2.412 | 0.000 | 0.000 | 0.000 | -2.799 |
|  |  | 26:LOAD GEN | -6.736 | -1.739 | 0.000 | 0.000 | 0.000 | -9.061 |
|  |  | 27:LOAD GEN | -7.341 | -1.094 | 0.000 | 0.000 | 0.000 | -10.832 |
|  |  | 28:LOAD GENI | -7.822 | -0.489 | 0.000 | 0.000 | 0.000 | -11.017 |
|  |  | 29:LOAD GEN | -8.179 | 0.060 | 0.000 | 0.000 | 0.000 | -10.683 |
|  |  | 30:LOAD GEN | -8.352 | 0.538 | 0.000 | 0.000 | 0.000 | -8.674 |
|  |  | 31:LOAD GEN ${ }^{\text {I }}$ | -8.365 | 0.937 | 0.000 | 0.000 | 0.000 | -6.434 |
|  |  | 32:LOAD GEN | -8.209 | 1.249 | 0.000 | 0.000 | 0.000 | -4.130 |
|  |  | 33:LOAD GEN | -7.889 | 1.473 | 0.000 | 0.000 | 0.000 | -1.931 |
|  |  | 34:LOAD GEN ${ }^{\text {I }}$ | -7.410 | 1.607 | 0.000 | 0.000 | 0.000 | 0.037 |
|  |  | 35:LOAD GEN 1 | -6.782 | 1.653 | 0.000 | 0.000 | 0.000 | 1.668 |



## Beam End Forces Cont...

|  |  |  | Axial | Shear |  | Torsion | Bending |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Beam | Node | L/C | $\begin{gathered} \hline \text { Fx } \\ \text { (kip) } \end{gathered}$ | $\begin{gathered} \text { Fy } \\ \text { (kip) } \end{gathered}$ | $\begin{gathered} \hline \text { Fz } \\ \text { (kip) } \\ \hline \end{gathered}$ | $\begin{gathered} \hline \mathbf{M x} \\ \left(\text { kip }^{-\mathrm{ft}}\right) \end{gathered}$ | $\begin{gathered} \text { My } \\ \left(\text { kip }^{\prime} \mathrm{ft}\right) \end{gathered}$ | $\begin{gathered} \mathrm{Mz} \\ \left(\text { kip }^{-\mathrm{ft}}\right) \end{gathered}$ |
|  |  | 36:LOAD GENI | -6.017 | 1.601 | 0.000 | 0.000 | 0.000 | 2.762 |
|  |  | 37:LOAD GENI | -5.101 | 1.402 | 0.000 | 0.000 | 0.000 | 2.791 |
|  |  | 38:LOAD GENI | -4.157 | 1.186 | 0.000 | 0.000 | 0.000 | 2.737 |
|  |  | 39:LOAD GENI | -3.184 | 0.946 | 0.000 | 0.000 | 0.000 | 2.514 |
|  |  | 40:LOAD GENI | -2.189 | 0.681 | 0.000 | 0.000 | 0.000 | 2.105 |
|  |  | 41:LOAD GENI | -1.362 | 0.447 | 0.000 | 0.000 | 0.000 | 1.589 |
|  |  | 42:LOAD GEN | -0.786 | 0.258 | 0.000 | 0.000 | 0.000 | 0.915 |


<br>cl-filesrv\CL-FileSrv\Projects\Projects_2018\CL402\402180060\Bridge\Analysis\STAAD Output - Future Loads\STAAD Output - OPERATING COMBINATIONS

## As-Configured

|  |  | Dead Load + 90 psf |  | H5 Truck |  | TOTAL |  | KDOT Column Expert - Input |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | F (kips) | M (k-ft) | F (kips) | M (k-ft) | F (kips) | M (k-ft) | Mx | My | F |
| BEAM 1 | MAX AXIAL | 334.554 | 149.854 | 8.275 | 5.307 | 342.829 | 155.161 | 155.161 | 0 | 342.829 |
|  | MIN AXIAL | 277.325 | 144.802 | 0.76 | 4.662 | 278.085 | 149.464 | 149.464, | 0 , | 278.085 |
|  | MAX MOMENT | 298.913 | 250.708 | 4.949 | 34.736 | 303.862 | 285.444 | 285.444 | 0 | 303.862 |
|  | MIN MOMENT | 312.966 | 67.969 | 8.269 | 3.06 | 321.235 | 71.029 | 71.029 , | 0 | 321.235 |
| BEAM 2 | MAX AXIAL | 333.051 | 149.854 | 8.315 | 3.136 | 341.366 | 152.99 | 152.99, | 0 | 341.366 |
|  | MIN AXIAL | 275.764 | 137.433 | 0.77 | 3.585 | 276.534 | 141.018 | 141.018 | 0 , | 276.534 |
|  | MAX MOMENT | 297.117 | 219.318 | 4.851 | 24.542 | 301.968 | 243.86 | 243.86, | 0 , | 301.968 |
|  | MIN MOMENT | 311.699 | 69.265 | 8.315 | 3.136 | 320.014 | 72.401 | 72.401 | 0 | 320.014 |
| BEAM 3 | MAX AXIAL | 331.399 | 125.465 | 8.347 | 6.038 | 339.746 | 131.503 | 131.503 | 0 | 339.746 |
|  | MIN AXIAL | 274.108 | 109.812 | 0.778 | 2.605 | 274.886 | 112.417 | 112.417, | 0 , | 274.886 |
|  | MAX MOMENT | 295.209 | 166.012 | 6.784 | 19.335 | 301.993 | 185.347 | 185.347, | 0 , | 301.993 |
|  | MIN MOMENT | 310.298 | 69.265 | 0.835 | 2.513 | 311.133 | 71.778 | 71.778 | 0 | 311.133 |
| BEAM 4 | MAX AXIAL | 329.612 | 76.538 | 8.37 | 8.123 | 337.982 | 84.661 | 84.661 , | 0 , | 337.982 |
|  | MIN AXIAL | 272.368 | 63.195 | 0.786 | 1.717 | 273.154 | 64.912 | 64.912 | 0 , | 273.154 |
|  | MAX MOMENT | 315.734 | 97.573 | 7.54 | 15.851 | 323.274 | 113.424 | 113.424 | 0 , | 323.274 |
|  | MIN MOMENT | 286.246 | 42.16 | 0.786 | 1.717 | 287.032 | 43.877 | 43.877 , | 0 | 287.032 |

<br>cl-filesrv\CL-FileSrv\Projects\Projects_2018\CL402\402180060\Bridge\Analysis\STAAD Output - Future Loads\STAAD Output - OPERATING COMBINATIONS

| 5 | Made By | DWC | Date | 8/3/2018 |
| :---: | :---: | :---: | :---: | :---: |
|  | Checked By | SFH | Date | 8/3/2018 |

$\qquad$

Calculations For: Lake Park Arch Bridge - Arch Rib Analysis

LOWER ARCH - AS-BUILT / AS-CONFIGURED
INVENTORY LEVEL (90 PSF PEDESTRIAN LOAD)
AXIAL-MOMENT INTERACTION DIAGRAM


| 5 | Made By | DWC | Date | 8/3/2018 |
| :---: | :---: | :---: | :---: | :---: |
|  | Checked By | SFH | Date | 8/3/2018 |

$\qquad$

Calculations For: Lake Park Arch Bridge - Arch Rib Analysis

LOWER ARCH - AS-BUILT / AS-CONFIGURED
OPERATING LEVEL (90 PSF PEDESTRIAN LOAD + H5 TRUCK)
AXIAL-MOMENT INTERACTION DIAGRAM


| 5 | Made By | DWC | Date | 8/3/2018 |
| :---: | :---: | :---: | :---: | :---: |
|  | Checked By | SFH | Date | 8/3/2018 |

$\qquad$

Calculations For: Lake Park Arch Bridge - Arch Rib Analysis
LOWER ARCH - AS-INSPECTED
INVENTORY LEVEL (90 PSF PEDESTRIAN LOAD)
AXIAL-MOMENT INTERACTION DIAGRAM


TramSystems $>$| Made By | DWC |  | Date |
| ---: | :--- | :--- | :--- |
| Checked By | SFH |  | Date |

$\qquad$

Calculations For: Lake Park Arch Bridge - Arch Rib Analysis

LOWER ARCH - AS-INSPECTED
OPERATING LEVEL (90 PSF PEDESTRIAN LOAD + H5 TRUCK)
AXIAL-MOMENT INTERACTION DIAGRAM
嘌 KDOT Column Expert 6.0


LDWER ARCH - AS-BUILT
INVENTORY LEVEL ( 90 psf) Beams 1, 2, 4

Interaction diagram


LOWER ARCH - AS-CONFIGURED
Inventory level (90 psf)
Gems 1, 2,4
Interaction diagram


LOWER ARCH - AS-INSPECTED
INVENTDRY LEVEL ( 90 psf)
Beams 1, 2, 4


LOWER ARCH - AS -BUILT
OPERATING (EVER ( 90 pSf +45 truck)
Beams 1-4


LOWER ARCH - AS-CONFIGURED
OPERATING LEVEL ( 90 pot +HS track)
Beans 1-4


LONER ARCH - AS.INSPECTED
operatina level (go pst + hs Truek)
Beoms 1-4


| Made By DWC | Date: $8 / 2 / 18$ | Job No: P402180060 |
| :--- | :--- | :--- |
| Checked By: | Date: $8 / 2 / 18$ | Sheet No. |

LAKE PARK ARCH BRIDGE - ADOITIONAL LOAD CON.15/LERATIONS

LOMGITUDINAL EPANDREL MEMSER

Inventory Rating

$$
\begin{aligned}
& h=3^{\prime}-2^{\prime \prime}, \quad b=12^{\prime \prime}, L=20^{\prime \prime}-0^{\prime \prime}, \quad d=35.29^{\prime \prime} \\
& A_{s}=2.84 \mathrm{~m}^{2} \text { (midspon), } A_{s}=2.00 \mathrm{~m}^{2}(1 / 4 \text { pomit) } \\
& \text { As-Buitt: } 800=1.38 \mathrm{k} / 4 \\
& \left.q_{u}=(0.090 \mathrm{ksf})(12 / 2)=0.54 \mathrm{k} / \mathrm{k} \quad\right\} \quad g_{\text {TOT }}=1.92 \mathrm{k} / \mathrm{ht} \\
& M_{\text {max }}=(1.92 \mathrm{k} / 4)\left(20^{\prime}\right)^{2} \frac{2}{8}=96.0 \mathrm{k} .4 t \\
& \mathrm{M}_{1 / 4 \mathrm{pt}}=(1.92 \mathrm{~km})(\mathrm{s} / 2)\left(20^{\prime}-5\right)=-72.0 \mathrm{k}-\mathrm{ft} \\
& \text { Midsen: } a=\frac{A_{0} f_{y}}{0.85\}_{2}}=\frac{(2.84)(18)}{(0.85)(.64)(12)}=7.83^{11} \\
& M_{\text {all }}=A_{s} f_{f}(d \cdot a / 2)=(2.84)(18)\left(35.29-\frac{783}{2}\right)=1603.9 \mathrm{k} \cdot \mathrm{~m} \\
& =133.7 \mathrm{k} \cdot \mathrm{~m} \\
& \text { 1/4 ODINT: } a=\frac{A_{s} f_{y}}{0.85 f_{c} b}=\frac{(2.00)(18)}{0.85(.64)(12)}=5.51^{\prime \prime} \\
& \left.M_{\text {all }}=A_{s} f_{y}(d \cdot a / 2)=(2,0) 418\right)\left(35.24-5 \frac{51}{2}\right)=1171.3 \mathrm{~km} \\
& =97.6 \mathrm{k} \cdot \mathrm{ft} \\
& \mathrm{C} / \mathrm{O} \text { (midspan) }=\frac{133.7 \mathrm{k}}{96.0 \mathrm{~K}}=1.39 \\
& \text { C/D (1/4POINT) }=\frac{976 \not 24}{72.0 k H}=1,35 \quad 4 \text { GOVERNS }
\end{aligned}
$$

As-Configured:

$$
\begin{aligned}
& \left.\begin{array}{l}
q u=1.53 \mathrm{k} / \mathrm{ct} \\
q u=0.54 \mathrm{k} / \mathrm{k}
\end{array}\right\} \begin{array}{l}
6 \mathrm{ma}=2.07 \mathrm{k} / \mathrm{ok}
\end{array} \\
& M_{\text {max }}=(2.07 \mathrm{k} \cdot \mathrm{Ct}) \frac{(20)^{2}}{\mathrm{E}}=103.5 \mathrm{k} \cdot \mathrm{ft} \\
& m_{1 / 4 P T}=(2.07 \mathrm{k} / 6+)(5 / 2)\left(20^{\prime}-5^{\prime}\right)=77.63 \mathrm{k} \cdot 4
\end{aligned}
$$

Capacities are some as im As-Buit remitition

$$
\begin{aligned}
\therefore C / D(\text { midspan }) & =\frac{133.7 \mathrm{k} \cdot \mathrm{ft}}{103.5 \mathrm{k} \cdot \mathrm{ft}}=1.29 \\
C / D(1 / 4 \text { point }) & =\frac{97.6 \mathrm{k} \cdot \mathrm{ft}}{77.63 \mathrm{k} \cdot \mathrm{ft}}=1.25
\end{aligned}
$$

LAKE PAPK ARCH BRIDGE - ADDITGNAL LUAD CONSIDERATIONS

As-Inspected: Applied loads ane efwal to those in the As-configurect onalysis case; however, melude sechoo loss an rebar as showin in previbus coalysis and adjust conerete struegth based on testing.

$$
\begin{aligned}
& A_{5}=(87.9 \%)\left(2.74 \mathrm{~m}^{7}\right)=2.49 \mathrm{in}^{2} \text { (midspon) } \\
& \left.\Delta_{3}=(87.7 \%)\left(2.00 \mathrm{~m}^{2}\right)=1.76 \mathrm{in}^{2} \text { ( } 1 / 4 \text { PONT }\right) \\
& \text { Midspen: } a=\frac{A_{s} f_{y}}{0.85 f_{e} b}=\frac{(2.49)(18)}{0.85(0.64)(12)}+6.8 .7^{11} \\
& m_{\text {aH1 }}=4_{3} t_{y}(d-92)=249(18)\left(35.29-\frac{6.87}{2}\right)=1427.7 \mathrm{k}-\mathrm{m}=119.0 \mathrm{k} \cdot \mathrm{k} \\
& \text { 1/4POINT: } a=\frac{A s \delta_{y}}{0.85 f_{c} b}=\frac{(1.76)(18)}{0.85(0.64)(12)}=4.85^{\mathrm{m}} \\
& M_{\text {all }}=(1.76)(18)(35.29-4.25)=1041.2 \mathrm{kin}=86.76 \mathrm{k}-\mathrm{ft} \\
& C / D(\text { midspen })=\frac{114.0 \mathrm{k}-\mathrm{ft}}{103.5 \mathrm{k}-\mathrm{ft}}=1.15 \\
& C / D(1 / 4 \operatorname{PDONT})=\frac{86.76 \mathrm{kft}}{77.63 \mathrm{k} \cdot \mathrm{ft}}=1.11 \text { - Geverns }
\end{aligned}
$$



LAKE PARK ARCH BRIDGE - ADDITOMAL LOAD CNWSHERATIANS

LONGITUQAAL SPANDREL MEMECE

Operating Rating
For operating level, use design rehicu of His truck +90 psf. Calculate LudF based on lever rote and multiply by resultant moment, from varying truck position along the length of the beam.

By inmechorn, governing moments will occur when rear wheel is placed at point of interest


Max Moment

$$
m_{\text {max }}=P L / 4
$$


moment a $1 / 4$ Paint

$$
m_{x}=\frac{P a b}{L}
$$

Live La ad Distribution Facer:


$$
\begin{aligned}
R & =\left(\frac{13-2.5}{13}\right) P+\left(\frac{13-8.5}{13}\right) p \\
& =1.154 \quad \text { (VLF })
\end{aligned}
$$

$$
\begin{aligned}
& \therefore M_{L L} \text { (midspan) }=L D F=P L / 4=(1.154)\left(4 k_{\text {ip }}\right)(20 / 4)=23.08 \mathrm{k}-\mathrm{FH} \\
& m_{n}\left(4 p^{\text {point }}\right)=(1.154)\left[(4 \mathrm{k} \cdot \mathrm{p}) \frac{\left(5^{\prime}\right)\left(5^{\prime}\right)}{20^{\prime}}+(1 \mathrm{kip}) \frac{\left(5^{\prime}\right)\left(1^{\prime}\right)}{20^{\prime}}\right]=17.60 \mathrm{k}-\mathrm{ft}
\end{aligned}
$$

| Made By: Duce | Date: $8 / 2 / 18$ | Job No: 040218,0060 |  |
| :--- | :--- | :--- | :--- |
| Checked Br: | Date: | $2 / 2 / 18$ | Sheet No. |

LATE PARK ARCH BRIDGE ADDITIONAL LOAD CONSIOERSTONS
As-Built: $\quad 8 \mathrm{DL}=1.38 \mathrm{k} / \mathrm{ct}$

$$
\begin{aligned}
& m_{\text {max }}=m_{D u}+m_{u}=(1.38 k / 4) \frac{(20)^{2}}{8}+(0.54 k+)^{(20)^{2}}+23.08 k f=119.08 k \cdot 4
\end{aligned}
$$

$$
\begin{aligned}
& \text { Midden: } a_{5}=\frac{A_{5} C_{y}}{0.85 f . b}=\frac{(2.84)(25)}{(0.85)(0.96)(12)}=7.25^{\prime \prime}
\end{aligned}
$$

$$
f_{\text {al }}=A_{5} f_{1}(d-9 / 2)=(2.84)(25)\left(35.29-\frac{7.25}{2}\right)=2248.2 \mathrm{~km}=187.3 \mathrm{k} \cdot \mathrm{H}
$$

$1 / 4$ Pons : $a=\frac{A_{s} E_{1}}{0.85 f_{c} b}=\frac{(2.0)(25)}{(0.5 E)\left(0 . k_{c}\right)(12)}=5.11^{\prime \prime}$

$$
\begin{aligned}
& A_{\text {and }}=(2.0)(25)\left(35.27-\frac{5.11}{2}\right)=1636.8 \mathrm{kin}: 136.4 \mathrm{k} \cdot \mathrm{~h} \\
& C_{D}(\text { midegan })=\frac{M_{\text {al }}}{m_{D L}+M_{L L}}=\frac{m_{\text {al }}}{m_{\text {max }}}=\frac{187.3 \mathrm{k} \cdot \mathrm{f}_{\mathrm{k}}}{119.08 k \mathrm{k}}=1.57 \\
& C / D\left(1 / 4 P_{0 N T}\right)=\frac{M_{a 11}}{M_{1 / 4 P T}}=\frac{136.4 K \cdot A}{89.60}=1.52+\text { GOVERNS }
\end{aligned}
$$

As Conforjured: $g u=1.53 \mathrm{k} / \mathrm{st}$

$$
\begin{aligned}
& \left.M_{m A x}=m_{b}+M_{u}=(1.53 m+)^{(2 s)}\right)_{B}^{2}+23.02 k+4+(0.46 m)^{(20)^{2}} \frac{2}{8}=126.52 \times \mathrm{m}
\end{aligned}
$$

$$
\begin{aligned}
& C 1 D(\text { midspan })=\frac{m_{\text {alk }}}{m_{\text {max }}}=\frac{1873 \mathrm{k} \cdot \mathrm{ft}}{126.58 \mathrm{k} \cdot 4+}=1.48 .
\end{aligned}
$$

LAKE PARK ARCH BRIDGE - ADDITIONAL LOAD CONSIDERATIONS
As-Inspented: Loads are the same as As-contigured, but use higher allowable stress in ennerete due to compressive testing and include section loss on reborn.

$$
\begin{aligned}
& A_{5}=2.49 \mathrm{~m}^{2} \text { (midrom) } \quad A_{s}=1.76 \mathrm{~m}^{2} \quad(1 / 4 \text { point }) \\
& f_{s}=25000 \mathrm{psi} \\
& f_{c}=1200 \mathrm{psi}
\end{aligned}
$$

Midspon: $a=\frac{A_{s} f_{y}}{0.85 f_{c} b}=\frac{(2.49)(25)}{1.35(1.2)(12)}=5.09^{11}$

$$
\begin{aligned}
& M_{\text {ail }}=A_{s} h_{y}(d-9 / 2\}=(2.45)(25)(35.29-5.64)+2038.4^{\mathrm{k} \cdot \mathrm{n}} \\
& =169.8 \mathrm{k} \cdot \mathrm{ft} \\
& 1 / 4901 \sqrt{1}: \quad a=\frac{A_{5} l_{1}}{0.85 f_{c} b}=\frac{(1.76)(25)}{0.85(1.2)(12)}=3.59^{\circ} \\
& M_{a l}=(1.74)(25)(35.29 \cdot 35 / 2)=1473.8^{k-m}=122.8 k \cdot 5 \\
& C / D \text { (midepen) }=\frac{M_{\text {all }}}{M_{\text {max }}}=\frac{1698 \mathrm{k}: \frac{\mathrm{t}}{122.58 \mathrm{k} \cdot \mathrm{it}}=1.34}{}=1 \\
& C / D\left(1 / 4 p_{\text {ant }}\right)=\frac{m_{\text {all }}}{m_{1 / 4 P T}}=\frac{122.8 \mathrm{k.ft}}{95.23^{\mathrm{kft}}}=1.29 \leftrightarrows \text { GOVERNS }
\end{aligned}
$$

| Made By: Dual | Date: $812 / 18$ | Job No: P402 1800160 |
| :--- | :--- | :--- |
| Checked By: $r+1$ | Date: |  |

LAKE PARK ARCH BRIDGE - ADDITIONAL LOAD CONEUGRATIONS
DECK
Inventory Rating


$$
q_{L 匕}=(90 p s f)\left(1^{\prime}\right)=0.09 \mathrm{k} / \mathrm{f+}, \quad M_{6 L}=(0.09) \frac{(125)^{2}}{8}=1.76 \mathrm{k}-f_{+}
$$

Area of tech: $A_{s}=0.65 \mathrm{in}^{2} / 4+$ (based an 7 "paring of $1 / 2^{\prime \prime} \times 1 / 2^{\prime \prime}$ khan bars)
clear cover $1^{\prime \prime}{ }^{\prime \prime} d=4.65^{\prime \prime}$

$$
\begin{aligned}
& \beta_{1}=0.85 \text { for } f_{c}^{\prime}=1600 \text { psi } \Rightarrow f_{c}=0.4(1600): 0.64 \mathrm{ksi} \\
& f_{s}=18000 \mathrm{psi} \\
& a=\frac{A_{0} d_{y}}{0.85 f_{2} t}=\frac{(0.65)(18)}{0.85(.64)(12)}=1.79^{\prime \prime} \\
& M_{\text {all }}=A_{\text {. }} f_{y}(d-8 / 2)=(0.65)(18)\left(4.65 \cdot \frac{1.77}{2}\right)=43.93^{\mathrm{k}-\mathrm{m}}=3.60^{\mathrm{k} . \mathrm{ft}} \\
& c / D=\frac{m_{\text {all }}}{m_{x}+m_{u}}=\frac{3.66}{(1.46+1.76)}=1.13
\end{aligned}
$$

$A<$-configured: $q_{p l}=0.08-k x / 6, m_{0 L}=1.71 \mathrm{kft}$
Lire Loads same as As.Buitt, $M_{\text {LL }}=1.76 \mathrm{k} \cdot \mathrm{ft}$

$$
c_{0} D=\frac{m_{11}}{m_{D}+m_{12}}=\frac{3.66}{1.71+1.76}=1.05
$$

As-Insecected: $M_{D L}=1.71 \mathrm{k} \cdot \mathrm{ft}, M_{L L}=1.76 \mathrm{k} \cdot \mathrm{A}$
Steel exhibits no serinifiren section loss $\Rightarrow A_{5}=0.65 \mathrm{~m}^{2} / 4$ Use higher corcecte strength due to materiel testing

$$
\begin{aligned}
& \therefore f_{e}^{\prime}=2000 \mathrm{psi} \Rightarrow f_{e}=0.4(2000)=800 \text { psi } \\
& a=\frac{A_{s} f_{y}}{0.85 f_{e} b}=\frac{(0.65)(18)}{0.85(0.8)(12)}=1.43^{\prime} \\
& M_{\text {all }}=A_{5} f_{y}(d-9 / 2):(0.65)(18)\left(4.65-1.4 \frac{3}{2}\right)=46.02 \mathrm{k} \cdot \mathrm{~m}=3.83 \mathrm{k} \cdot 4 \\
& C / D=\frac{m_{\text {all }}}{m_{\text {mut }}+m_{u}}=\frac{3.83 .}{1.71+1.76}=1.10
\end{aligned}
$$



LAKE PACK ARCH BRIDGE - ADDITIONAL LEAK CONSIDERATIONS
DECK

Operating Rating
For operating level, use design vehicle of 45 truck. Allowable stresses ane higher for operating level:


H5 trick

$$
\begin{aligned}
& f_{s}=25000 \text { psi: } \\
& f_{c}=960 \text { psi (online), } 1200 \text { ps: (complete testing) }
\end{aligned}
$$

Determine rue load moments using AASHTD 3.2413 .1 (Cask A):

$$
\begin{aligned}
& m_{L L}=\left(\frac{s+2}{32}\right) p, \text { what } p=4 \text { kips (weight of one rear whee) } \\
& m_{L L}=\left(\frac{12.5+2}{32}\right)(4 \text { kips })=1.81 \mathrm{k}-\mathrm{ft} \text { (truck) }
\end{aligned}
$$

As-Buit: $M_{a b}=1.4644$

$$
\begin{aligned}
m_{L L} & =1.81 \mathrm{k} \cdot f+1.76 \mathrm{k} \cdot 6 \mathrm{~m}=3.57 \mathrm{k} \cdot \mathrm{fr} \\
a & =\frac{A_{s} f_{y}}{0.85 f_{c} b}=\frac{(0.65)(25)}{0.85(0.96)(12)}=1.661 \\
m_{\text {ah }} & =A_{s} f_{y}(d-9 / 2)=(0.65)(25)\left(4.65-\frac{1.66}{2}\right)=62.08 \mathrm{k} \cdot \mathrm{~m}=5.17 \mathrm{k} \cdot f_{t} \\
c / D & =\frac{m_{\text {all }}}{m_{a L}+m_{u}}=\frac{5.17}{1.46+3.57}=1.02
\end{aligned}
$$

As-Configured:

$$
\begin{aligned}
& m_{D L}=1.74 \mathrm{k}-\mathrm{sh} \\
& m_{L L}=3.57 \mathrm{k} \cdot \mathrm{ft}
\end{aligned}
$$

$$
C_{D}=\frac{M_{\text {all }}}{M_{D L}+M_{L L}}=\frac{5.17}{1.71 .3 .57}=0.98
$$

As-Inpected: Loads same as As-Comfigured

$$
\begin{aligned}
& a=\frac{A_{1} f_{y}}{0.85 f_{c} b}=\frac{(0.65)(25)}{0.85(1.2)(12)}=1.33^{11} \\
& M_{\text {all }}=A_{s} f_{y}(d-9 / 2)=(0.65)(25)(4.65-1.33 / 2)=64.76^{k-i n}=5.39 \mathrm{k} \cdot f+ \\
& C / D=\frac{M_{\text {all }}}{m_{\text {aL }}+M_{L L}}=\frac{5.39}{1.71+3.57}=1.02
\end{aligned}
$$

B, unless mote exact methods are used considering tire contact area. The tire contact area needed for exact thethods is 占iven in Article 3,30.

In Cases A and B :
$S=$ effective span length, in feet, as defined under "Span Lengths" Articles 3.24.1 and 8.8;
$E=$ width of slab in feet owet which a wheel load is distributed;
$P=$ load on one rear wheel of truck ( $\mathrm{P}_{15}$ or $\mathrm{P}_{70}$ )
$P_{15}=12,000$ pounds for H 15 loading;
$P_{14}=16,000$ ponnds for H 20 loading.

### 3.24.3.1 Case A-Main Reinforcement Perpendicular to Traffle (Spans 2 to 24 Feet Inclusive)

The live load moment for simple spans shail be determined by the following forturlas (impact not included):

HS 20 Loading:

$$
\left(\frac{S+2}{32}\right) \mathrm{P}_{24}=\underset{\text { Moment in foot }- \text { pounds }(3-15)}{\text { per foot }- \text { width of slab }}
$$

HS 15 Loading:

$$
\begin{equation*}
\left(\frac{S+2}{32}\right) P_{15}=\underset{\text { Moment in foot }- \text { poutds }- \text { width of slab }}{ } \tag{3-16}
\end{equation*}
$$

In slabs continuous over three or more supports, a continuity factor of 0.8 shall be applicd to the abowe fommulas for both positive and negative moment.

### 3.24.3.2 Case B-Main Reinforcement Parallel to Traffic

For wheel loads, the distribution width, E, shall be $(4+0.068)$ but shatl not exceed 7.0 feet. Lane loads are distributed over a width of 2E. Longitudinally reinforced slabs shall be designed for the appropriate HS loading.

For simple spans, the maximum live load moment per foot width of slab, without impact, is closely approximated by the following formulas:

HS 20 Loading:
Spans up to and intoluding 50 feet: $L L M=900 \$$
foot-pounds
Spans 50 feet to 100 feet: $\quad L L M=1,000$
(1.30S-20.0)
foot-pounds

HS 15 Loading:
Use $1 / 4$ of the values obtained from the formulas for HS 20 Loading

Moments in combinuous spans shall be detemmed by suitable analysis using the truck or appropriate lane loading.

### 3.24.4 Shenr and Bond

Slabs designed for bending moment in accordance with Article 3.24.3 shall be comsidered satisfactory in bond and shear.

### 3.24.5 Cantilever Slabs

### 3.24.5.1 Truck Loads

Under the following formulas for distribution of loads on cantilever slabs, the slab is designed to support the load independently of the effects of any edge support along the end of the cantilever. 'The distribution given includes the elfect of wheels on paratlel elements.

### 3.24.5.1.1 Case A—Reinforcement Perpendicular to Traftic

Fach wheel on the element perpendicular to traffic shall be dititibuted ower a width according to the following formula:

$$
\begin{equation*}
E=0.8 x+3.75 \tag{3-17}
\end{equation*}
$$

The moment per foor of slab shall be (P/E) $X$ footpounds, in which $X$ is the distance in feet from load to point of support.

### 3.24.5.1.2 Cane B-Reinforcement Paralied to Traffic

The distribution width for each wheel load on the element parallel to traffic shall be as follows:
$\mathrm{E}=0.35 \mathrm{X}+3.2$, but shall not exceed 7.0 feet
The moment per foot of slab shall be ( $\mathrm{P} / \mathrm{E}$ ) $X$ rootpounds.

### 3.24.5.2 Railing Loads

Railing loads shall be applied in accordance with Article 2.7. The effective length of slab resisting post loadings shall be equal to $\mathrm{E}=0 . \mathrm{gX}+3.75$ feet where no parapet

## MEMORANDUM

TO: Karl Stave P.E., Milwaukee County Architecture, Engineering \&
FROM: Kevin Wood, P.E.
DATE: September 21, 2018

## SUBJECT: Lake Park Arch Bridge Load Calculation Review

As part part of the continued study for the Lake Park Arch Bridge over Ravine Road, the Lake Park Friends hired an independent consultant, TranSystems, to perform concrete testing and a structural analysis. Concrete testing was performed to determine if the existing in-place concrete material is capable of receiving structural repairs (such as concrete patching). A structural analysis was conducted to determine the load carrying capacity of three elements of the bridge: arch rib, spandrel beam, and deck. Milwaukee County has asked GRAEF to review the TranSystems reports and provide our opinions on their appropriateness.

## Concrete Testing Results Report

TranSystems evaluated several concrete tests performed by Giles Engineer Associates, Inc. and provided their opinions in a report dated June 18, 2018. The program included testing for chloride content, petrographic/air content analysis, freeze/thaw, and review of earlier unconfined compression testing.

Overall the Concrete Testing Results Report was complete and the conclusions reasonable. There were, however, a few items to be noted:

- One of the eight concrete core samples through the deck was omitted from testing due to deterioration.
- Within the Chloride Content section of the report, one active mitigation technique mentioned is the use of galvanic anodes placed within new concrete patches. While this is a common technique to address rebar corrosion within the patch, it should be noted that reinforcement around the perimeter of the patch zone may start to corrode at an accelerated rate. This is due to pH differences between the existing concrete and new patch concrete. Placement of the galvanic anodes near the patch edges can help to mitigate this effect.
- The report Conclusions state that test results indicate rehabilitation could maintain structural integrity and load capacity for 50 years, based primarily on the lack of high chloride concentrations in the deck. While this is an important factor, our opinion continues to be that given the overall condition of the bridge, the life
span of a rehabilitated bridge with normal maintenance would be less than 50 years.


## Structural Analysis Report

TranSystems conducted several analyses on the arch rib, spandrel beam, and deck elements of the bridge to determine their load carrying capacities and the load demands on each. For each element, three conditions were investigated:

1. As-built using original loads, section properties and material strengths
2. As-configured using current loads based on structure modifications, section properties and original material strengths
3. As-inspected using current loads based on structure modifications, current section properties based on section loss, and material strengths based on testing.

All analyses used Allowable Stress Design (ASD) methodology. For reinforced concrete, this is a method rarely used today to determine the strength of concrete components, but was the method likely used to design the bridge around 1903. This approach is still accepted by WisDOT to analyze and load rate concrete highway bridges originally designed using ASD.

Review of the TranSystem report and appendix suggests an analysis approach that generally follows GRAEF's 2005 and 2015 load ratings for Milwaukee County. However, there are several differing approaches and assumptions that strongly affect each element's load carrying capacity conclusions.

## Capacity-to-Demand Ratios vs. Bridge Load Ratings

TranSystem chose to report each bridge element's load carrying capacity against the total demand of the bridge's combined dead load plus live load. Simply written, the equation is "capacity/(dead load + live load)", and values greater than 1.0 are desired. Using an ASD approach, member capacity is determined by applying a factor of safety to its calculated strength. For example, a factor of safety equal to 2 applied to a member having a strength of 100 pounds will result in an allowable usable strength of 50 pounds. Depending on the element and material type, factors of safety vary. For bridge inventory level load rating purposes, AASHTO's Manual for Condition Evaluation of Bridges uses factor of safety of 1.83 for reinforcing steel with a yield strength of $33,000 \mathrm{psi}$, and 2.5 for concrete having a yield strength of $2,000 \mathrm{psi}$.

While use of capacity-to-demand ratio is a conventional approach for building analysis, determination of load rating factors is conventional for bridges and was the method used for GRAEF's earlier load ratings. For this approach, a rating
factor of a member's available capacity to resist live loads is reported. Simply written, the equation is "(capacity - dead load)/live load", and values greater than 1.0 are desired. This ratio can then be multiplied by the design live load to yield the maximum live load the member can resist.

It is emphasized that capacity-to-demand ratios are not the same as rating factors. For elements with adequate strength to resist the applied loads, capacity-to-demand ratios will be less than rating factors. For understrength elements, capacity-to-demand ratios will be greater than rating factors.

## Inventory Level Ratings and Operating Level Ratings

While TranSystem correctly defines Inventory Level and Operating Level, they are incorrectly applied as load ratings in their calculations. As defined in AASHTO's Manual for Bridge Evaluation, a rating factor is defined as:

$$
\text { RF } \left.=\left(\text { capacity }-\mathrm{A}_{1} \times \text { dead load }\right) /\left(\mathrm{A}_{2} \times \text { (live load }+ \text { impact }\right)\right)
$$

Where:
$A_{1}$ is the dead load factor
$\mathrm{A}_{2}$ is the live load factor (live load + impact) is a constant load (impact $=0$ for pedestrian bridges)

For an ASD approach, $\mathrm{A}_{1}=\mathrm{A}_{2}=1.0$ and the element's material capacities are varied depending on whether an inventory or operating rating is desired. This approach seems to have been used to determine element capacities within the TranSystem report. However, we see a few problems with how the inventory and operating ratings are applied.

- The live load used is inconsistent. Wheras the pedestrian loading only was used for the inventory analysis, the pedestrian + H5 service truck load was used for the operating analysis. The same level of live load should be used for comparing an inventory to operating rating.
- Pedestrian and H5 service truck live loads should not be applied simultaneously. This is an unrealistic load combination as noted in the AASHTO Guide Specifications for the Design of Pedestrian Bridges.
- Inventory and operating rating analyses are to be applied to a load rating approach as outlined in AASHTO, not to determine capacity-to-demand ratios.


## Member Capacities

The arch bridge uses a proprietary steel reinforcing bar system known as Kahn bars. These bars consist of a steel square bar with thin plate projections, or "fins". The fins are cut transversely at regular intervals and cut free from the

## GRāEF

square bar at predefined lengths. These cuts allow the fins to be bent up to provide shear reinforcement for the concrete element. The images below from Kahn's 1904 Handbook illustrate this configuration.


## GRāEF



## GRāEF



Bars kept in stock ready for immediate delivery, in any lengths with standard cuts.
Fig. 14.
TranSystem determines the load carrying capacities of the deck, spandrel beam, and arch rib using an ASD approach. Given the limited as-built information available for this bridge, several assumptions must be made with respect to the Kahn bars. Review of TranSystem's load capacity calculations versus field observations and GRAEF's 2005 and 2015 analyses suggests an approach which in some cases is unconservative.

Deck - according to the original design drawings, $1 / 2^{\prime \prime} \times 1 \frac{1}{2}$ " Kahn bar reinforcing steel was to be placed transversely at 18 " centers within a 6 " thick deck. Using information available from a 1910 textbook, a rebar area of $0.41 \mathrm{in}^{2}$ spaced at 18 " and a 6 " thick deck was used to determine GRAEF's 2005 deck load rating
factors. Straight bars with no fin cuts were assumed. The rating factors were updated in 2015 to account for higher concrete strength test results.

Scaling from photographs, TranSystem assumed a 7" rebar spacing and a rebar area of 0.38 in $^{2}$ using 1904 Kahn bar catalog information. This closer bar spacing results in a greater steel area and yields a greater deck bending capacity. Additionally, concrete cores indicate a 1" thick concrete overlay was placed on the original deck

## Further review of existing information suggests deck capacity refinements are warranted in the TranSystems analysis:

- The drawings that GRAEF used to determine capacity in 2005 indicated 18 inch spacing of Kahn bars. Subsequent field investigations have revealed as-placed spacing of bars closer than 18 inches. However, these field observations are only a snapshot of areas, and are not comprehensive. We believe the assumption of a 7 inch bar spacing is not warranted, given the level of uncertainty regarding spacing, and the fact that wider spacings have been observed.
- Scaling photographs from GRAEF's 2015 inspection and 2018 site visit indicate a maximum deck rebar spacing at approximately 11 " centers in the $3^{\text {rd }}$ bay from the south, with an average spacing of approximately 10 ". The image below shows the spacing in comparison with the $41 /{ }^{\prime \prime}$ outside diameter drain pipe. Given the uncertainty that exists regarding reinforcement spacing, no less than a 10 inch spacing should be used to determine the governing bending capacity.


## GRāEF



- Original design drawing deck cross sections and field observations of underside spalls (see image above) suggest the Kahn bar fins are bent up for most of the deck width. This will reduce the reinforcement areas assumed by both GRAEF and TranSystem.
- The 1904 Kahn bar literature suggests the full bar areas (square bar area plus bar fins) can be used to determine the strengths of reinforced beams. However, we do not believe this is an appopriate approach for two reasons. First, the bent up fins provide no bending strength. Second, even when bars are not bent up, the discontinuity of the steel where fins are transversely slit makes use of the fins questionable. From the 1904 Kahn bar literature Figure 14 and deck underside photograph earlier, only the middle 6 " of the bar length has continuous uncut fin steel, and only this length should be considered effective as having the full square bar plus fin area. Regions beyond the middle 6" should consider the square bar area only.
- When using ASD to determine the capacity of reinforced concrete flexure members, AASHTO Standard Specifications 8.15 .3 state that straight-line theory of stress and strain in flexure be used. TranSystems calculations appear to use working stresses in a Whitney Block approach to compute


## GRāEF

the capacity of concrete elements, which is not a straight line method. Straight-line theory should be used for consistency with ASD methodologies.

Spandrel Beam - according to the original design drawings, (2) 3" x 1" Kahn reinforcing steel bars are placed in the bottom of the beams. Field observations and photographs of the heavily spalled southeast spandrel indicate there are no fins contributing to the reinforcement area, and approximately $1 / 16$ " surface section loss all around the 1 " $\times 1$ " bars.

Further review of existing information suggests spandrel capacity refinements are warranted in the TranSystems analysis:

- Beam capacity calculations use Kahn bar areas that include the square bar plus fin areas in the middle 10-ft of the beam. Field observations of the southeast spandrel show that the fin areas should not be used because the fins are not present on the longitudal reinforcement. This is shown in the photograph below.

- From the 1904 Kahn bar literature Figure 14 for 3 " x 1" bars, only the middle 18" of the bar length should be considered effective in having the full bar square bar plus fin area. Regions beyond the middle 18 " should consider the square bar area only.


## GRāEF

- The TranSystem report states that a spandrel beam depth of 3'-2" was used because the deck was poured monolithically with the beam. We believe that use of the entire $3^{\prime}-2^{\prime \prime}$ depth is unconservative. Our field inspection and photos show cold joints between the deck and spandrel beam. Most of these joints are cracked and had been routed and filled with caulk. In addition, the original design drawings suggest the bent up spandrel beam Kahn bar fins do not project into the deck. 1904 Kahn bar literature Figure 14 shows 18 " to 24 " standard cuts for the 3 " x 1 " bar bent up fins which are not long enough to reach into the deck. In the absence of reinforcement crossing this degradated joint, we do not believe there will be sufficient shear transfer to allow for the deck and the beam to act in a composite fashion.

- When using ASD to determine the capacity of reinforced concrete flexure members, AASHTO Standard Specifications 8.15 .3 state that straight-line theory of stress and strain in flexure be used. As explained above, this method had not been used in the TranSystem calculations. Straight-line theory should be used for consistency with ASD methodologies.

Arch Ribs - according to the original design drawings, various combinations of Kahn bar reinforcing steel are placed in the top and bottom of the arch ribs. Field observations and photographs of spalled regions indicate bent up fins inherent with the Kahn system. The same arch rib size and reinforcing used for GRAEF's 2005 and 2015 load ratings were used in the TranSystem calculations, however,

TranSystem calculations indicates a capacity-to-demand ratio approach was used as opposed to an AASHTO based load rating approach.

- Arch rib capacities are determined using KDOT Column Expert software. Concrete and reinforcing steel strengths are input using ASD level stresses. It is unknown if the software is properly being used as an ASD tool as most reinforced concrete design software uses modern ultimate strength based equations. AASHTO Standard Specification 8.15 .4 states that combined flexural and axial ASD load capacity of compression members is to be taken as $35 \%$ of that computed using the strength design methods of section 8.16.
- The demand-to-capacity approach uses a straight line methodology to determine capacity on a column's interaction diagram. The approach used in AASHTO's Manual for Bridge Evaluation uses a more refined two-line procedure that accounts for differences in the bending moment to axial load ratios of the dead loads versus the live loads.


## Conclusions and Recommendations

Our largest concern with the TranSystem analysis is that the deck and spandrel beam member capacities are in some cases unconservative. Assumptions that lead to the unconservative capacities include use of reinforcing steel areas that are too large, and a spandrel beam depth that is too large. Member capacities that are too high yield capacity-to-demand ratios that are also too high, suggesting these bridge elements have strength to resist current code prescribed pedestrian live loads when they do not.

Other concerns include that member capacities should be determined using ASD methods as outlined in the AASHTO Standard Specifications for consistency with using service loading. Whereas using a capacity-to-demand ratio to check member adequacy is not wrong, load rating factors are normally used for bridge structures. Also, where inventory and operating levels of service are to be investigated, load rating factor equations are to be used, and only a single live load type (either pedestrian only or H5 service vehicle only) should be used when comparing the rating factors.

As a minimum we recommend the following refinements to the load calculations:

## Deck

Recalculate the bending capacity using a bar spacing of 10 " and a reinforcing steel area only considering the $1 / 2^{\prime \prime} \times 1 / 2 "$ square bar. ASD bending capacity to follow AASHTO Standard Specifications section 8.15.3.1.

## Spandrel Beam

Recalculate the bending capacity using a reinforcing steel area considering the 1 " x 1 " square bars and $1 / 16$ " section loss all around due to corrosion. Use a maximum beam
depth of 2'-8". ASD bending capacity to follow AASHTO Standard Specifications section 8.15.3.1.

Arch Rib
ASD capacities for combined axial load and bending to follow AASHTO Standard Specifications section 8.15.4.

KGW:kgw
cc: Lori Rosenthal, P.E. (GRAEF)
John Kissinger, P.E. (GRAEF)

## Meeting Minutes

Subject: Lake Park Ravine Road Concrete Footbridge<br>Prepared by: Colleen Reilly, President, Lake Park Friends<br>Location: Conference call Date/Time: September 25, 2018 / 3:00-4:30 p.m. CT<br>Participants: Karl Stave, Milwaukee County<br>Kevin Wood, GRAEF<br>John Kissinger, GRAEF<br>Wes Weir, TranSystems

Don Cartwright, TranSystems

## Notes

1 Overall project goal is to have a bridge that is safe, that is economically feasible (in terms of cost and longevity), and that is true to its historical value. Federal, state, and local historic preservation laws require consideration of rehabilitation first and foremost for historic structures. All agree bridge can be rehabilitated; however, differences in what is required during rehabilitation to achieve project goal. Purpose of call is to resolve those differences to help determine what is required to rehabilitate the bridge.

Bridge structural elements
a. Kahn bar system in deck. There is limited as-built information, so assumptions were made based on visual inspection. There remains a difference of professional opinion regarding the effective area of steel reinforcement in the deck. Kahn bar spacing is not 18 " stated in the design plans and used by GRAEF but is also not consistently 7" throughout the deck as used by TranSystems. Could measure to resolve spacing, but GRAEF believes the effective area of Kahn bars is also of concern. The exposed steel on underside of bridge shows that the uncut fin steel in the transverse Kahn bars are not continuous; only the middle section appears to have the full square bar and fin area (this construction is consistent with the Kahn Manual, which states that the full bar areas can be used to determine strength). Even in middle section, GRAEF believes that Kahn bars have discontinuities which make the use of the fin steel questionable. TranSystems' performed calculations that shows that the bridge has the capacity to support the 80 psf live load as per the original design plans based on scaled dimensions of the rebar from the underside of deck and the effective area of the Kahn bars per the Kahn design manual. All agreed that there is no evidence that the bridge is in an overstressed condition. TranSystems believes that refining these assumptions in the TranSystems calculations will result only in a change to the load ratings for vehicular traffic but would not significantly change pedestrian load capacity. GRAEF does not believe deck can support 90 psf pedestrian loading because of these as-built uncertainties related to the spacing of the deck bars and the effective area of the Kahn bars. The County wants to be conservative with the assumptions, especially given past incidents. The load rating methodologies are inherently conservative and are used on hundreds of bridges across the US. If want to retain the current deck, could resolve via a load test prior to or during design phase. May not be so important to fine tune the deck's load rating if the County has the funds to replace the deck. If refined numbers are lower than 90 psf , could restrict the number of people and restrict vehicles on the bridge with bollards or other.
b. Spandrel beam depth. Remains a difference of professional opinion regarding the spandrel beam depth. GRAEF believes the caulked cracks on interior face of the spandrel suggest a cold joint, and that the haunch makes it difficult to see the cold joint on the exterior of the bridge. GRAEF believes the arches were poured first, then the spandrels, then the deck. TranSystems stated that even if there is a clear joint, it would not change the analysis of the entire beam; the rebar is continuous up through the deck.

## Notes

GRAEF does not believe the rebar crosses the spandrel beam/deck plane. TranSystems proof of concept demonstrates design intent was achieved based on TranSytems analysis assumptions. All agreed that this could be resolved during the design phase and if needed, the spandrels could be strengthened.
3 Bridge longevity. Based on the additional material testing results (no evidence of ASR; low chloride levels), all agreed that the as long as the rehabilitation is conducted properly (good specifications and good quality control) and the rehabilitated bridge is maintained, the rehabilitated bridge could last at least 50 years. The concrete deterioration that is visible is due to lack of maintenance, minimal concrete cover, and the age of the bridge. Routine maintenance would include periodic application of a penetrating protective concrete sealant, inspections, etc, which would not necessarily be needed on a newly constructed bridge to achieve the same 50+ year life span..

Vaulted abutments. County states the vaulted abutments are in poor condition (large cracks, lack of steel reinforcement, eroding ravine slope undermining the foundation). TranSystems stated these curtain walls are architectural features (not structural) and are not connected to the main structure, but they could be replaced during a rehabilitation for low cost. GRAEF stated that these are structural elements supporting the deck, not curtain walls. At the wider overlook sections, there are concrete beam elements that help to support the deck. All agreed this could be evaluated during the design phase.
$5 \quad$ Call concluded at $4: 30$ p.m.

Cc: Wesley.Weir@wsp.com
Colleen,
Following up on our discussion from earlier, TranSystems would like to provide clarification on the Khan bar reinforcement system as discussed in GRAEF's review of our analysis report. In particular, we do not agree with the assertion that the entire bar area cannot be included for flexural strength due to discontinuities in the outer fins.

The review of our report states that the Khan bars have transverse slits even where bars are not bent up, and we do not believe this to be true. The Khan bars are fabricated as one continuous bar with a diamond-shaped inner core and fins on the outside. In order to create the include shear reinforcing, the fins are cut with a small transverse slit and variable-length longitudinal cuts which then allow the bars to be bent up. The bars are not fabricated with these cuts pre-made, and the center portion of the bar is left continuous to allow for full capacity of the bars (core +fin ) in flexure. This is shown in Fig 11 on Page 4 of GRAEF's review.

Furthermore, GRAEF states that only the middle 6" of the bar length is left continuous and uncut. We believe GRAEF has incorrectly interpreted the standard cut diagram (Fig 14 on Page 6 of their report). In this diagram, the center portion of the bars shown is intentionally not dimensioned, as this length would be customized based on the configuration of the member being reinforced. The purpose of this diagram is strictly to demonstrate the dimensions for these cuts for different bar sizes and lengths of bent shear bars. This diagram does not specify the uncut flexural length left in the middle of the bar, and the only reason it is drawn so short is likely just to fit all the detail needed on the page. In fact, the bottom diagram showing 18 " and 24 "cuts specifically has a break line shown in the middle of the bar.

Based on several field photographs of the deck underside, it appears very clear that the full bar is included for most of the length of the transverse deck with while the fins are bent up near the ends. This supports the concept that the Khan system was utilized to provide full bar area in the primary flexure areas and additional shear capacity near the ends. There are no photographs suggesting that the fins are cut transversely near the center of the span. As is the design intent of the Khan system, each bar is fabricated continuously and only cut specifically in areas where bars are being bent up to provide additional shear capacity.

I have attached a very brief markup which calls attention to these points. If you have any questions, please don't hesitate to let myself or Wes know.

Thanks,
Don
From: Colleen Reilly [mailto:ckreilly@outlook.com]
Sent: Friday, September 21, 2018 4:54 PM
To: Wesley.Weir@wsp.com; CL-Don Cartwright [dwcartwright@transystems.com](mailto:dwcartwright@transystems.com); margaret@demichele.com; P.Schultz@horizondbm.com; srduback@yahoo.com
Subject: Fwd: Lake Park Arch Bridge Report Review

I have not yet reviewed this, but wanted to get this to you.
Colleen Reilly, PMP
(414) 202-5730
ckreilly@outlook.com

Begin forwarded message:
From: "Stave, Karl" [Karl.Stave@milwaukeecountywi.gov](mailto:Karl.Stave@milwaukeecountywi.gov)
Date: September 21, 2018 at 3:38:52 PM CDT
To: Colleen Reilly [ckreilly@outlook.com](mailto:ckreilly@outlook.com)
Subject: FW: Lake Park Arch Bridge Report Review
Colleen,
See attached review. I haven't reviewed it yet but wanted to get it to you before the weekend.

Thanks,
Karl Stave, P.E.
Architecture, Engineering \& Environmental Services
DAS - Facilities Management Division
Milwaukee County
633 W. Wisconsin Ave.
Suite 1000
Milwaukee, WI 53203
(414) 278-4863

This message is intended for the sole use of the individual and entity to which it is addressed, and may contain information that is privileged, confidential and exempt from disclosure under applicable law. If you are not the intended addressee, nor authorized to receive for the intended addressee, you are hereby notified that you may not use, copy, disclose or distribute to anyone the message or any information contained in the message. If you have received this message in error, please immediately advise the sender by reply email and delete the message.


square bar at predefined lengths. These cuts allow the fins to be bent up to provide shear reinforcement for the concrete element. The images below from Kahn's 1904 Handbook illustrate this configuration.


Primary Flexure Zone: In this area, note that there are no transverse slits pre-fabricated in the Khan bar. The full bar (core plus fins) is intact as initially fabricated and is developed for flexural capacity in this region.

Primary Shear Zone (typ.): In this area, the fins are cut on each side with an L-shaped cut consisting of a small transverse slit and longitudinal cut between the fin and core. These cuts are done custom only where desired based on designer's intent with dimensions for cuts and connected material as shown in Fig 14. There are no pre-cuts made along the remaining length of the member.

## GRāEF



The intent of this figure is to demonstrate the typical lengths of cuts for the shear fins and the amount that is left uncut to provide connection to the inner core ( $3 / 4$ " for 6 " cuts, $1^{\prime \prime}$ for 8 " cuts, etc.). The length of bars of bars left uncut for flexural reinforcement are intentionally not included on this diagram, as this value would be customized based on the size and configuration of the member. (typ.)

## GRāEF

 of the bar is specifically not dimensioned in Fig 14. The intent of the diagram is to show the standard cuts in shear zones, while the uncut portion of bar in the middle could be left at any length. It was likely drawn for a very short length in the detail to save space on the page.
esign drawing deck cross sections and field observations of spalls (see image above) suggest the Kahn bar fins are bent st of the deck width. This will reduce the reinforcement areas assumed by both GRAEF and TranSystem.

- The 1904 Kahn bar literature suggests the full bar areas (square bar area plus bar fins) can be used to determine the strengths of reinforced beams. However, we do not believe this is an appopriate approach for two reasons. First, the bent up fins provide no bending strength. Second, even when bars are not bent up, the discontinuity of the steel where fins are transversely slit makes use of the fins questionable. From the 1904 Kahn bar literature Figure 14 and deck underside photograph earlier, only the middle 6 " of the bar length has continuous uncut fin steel, and only this length should be considered effective as having the full square bar plus fin area. Regions beyond the middle 6" should consider the square bar area only.
- When using ASD to determine the capacity of reinforced concrete flexure members, AASHTO Standard Specifications 8.15 .3 state that straight-line theory of stress and strain in flexure be used. TranSystems calculations appear to use working stresses in a Whitney Block approach to compute


[^0]:    A Areatit steal in si, in. W-Weight of steel pery linear foot l. - Ieneth if diagoctals
    Entter of aite iof beats ahould wat be lest than $1: 4$ for
    b-Ilenth of heam, in iucles, finm top of shals to nemier of al nel reiulorcement.

[^1]:    *These provisione do nol appty to bearo ledges. The PCA publication, "Notes on ACL 318-R3," entiains an example design of beam ledgerParl 16. example 16.3.

[^2]:    *The cosfficienl 中 provides for the passibility that strall advere vatiations in material strengths, workitanship, and dimensions, while indiwidually within mexeptable tolerances and limits of good praptice, may contint to resula in undertiengh.

[^3]:    <br>cl-filesrv\CL-FileSrv\Projects\Projects_2018\CL402\402180060\Bridge\Analysis\STAAD\Future Loads\Lake Park Arch - DL plus $\subseteq$

[^4]:    <br>cl-filesrv\CL-FileSrv\Projects\Projects_2018\CL402\402180060\Bridge\Analysis\STAAD\Future Loads\Lake Park Arch - DL plus $\subseteq$

[^5]:    <br>cl-filesrv\CL-FileSrv\Projects\Projects_2018\CL402\402180060\Bridge\Analysis\STAAD\Future Loads\Lake Park Arch - DL plus $\subseteq$

[^6]:    <br>cl-filesrv\CL-FileSrv\Projects\Projects_2018\CL402\402180060\Bridge\Analysis\STAAD\Future Loads\Lake Park Arch - H5 Truck

